語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Quantile regression in clinical rese...
~
Cleophas, Ton J.
Quantile regression in clinical researchcomplete analysis for data at a loss of homogeneity /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Quantile regression in clinical researchby Ton J. Cleophas, Aeilko H. Zwinderman.
其他題名:
complete analysis for data at a loss of homogeneity /
作者:
Cleophas, Ton J.
其他作者:
Zwinderman, Aeilko H.
出版者:
Cham :Springer International Publishing :2021.
面頁冊數:
xii, 290 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Clinical medicineResearch
電子資源:
https://doi.org/10.1007/978-3-030-82840-0
ISBN:
9783030828400$q(electronic bk.)
Quantile regression in clinical researchcomplete analysis for data at a loss of homogeneity /
Cleophas, Ton J.
Quantile regression in clinical research
complete analysis for data at a loss of homogeneity /[electronic resource] :by Ton J. Cleophas, Aeilko H. Zwinderman. - Cham :Springer International Publishing :2021. - xii, 290 p. :ill., digital ;24 cm.
Chapter 1. General Introduction -- Chapter 2. Mathematical Models for Separating Quantiles from One Another -- Part I: Simple Univariate Regressions versus Quantile -- Chapter 3. Traditional and Robust Regressions versus Quantile -- Chapter 4. Autoregressions versus quantile -- Chapter 5. Discrete Trend Analysis versus Quantile -- Chapter 6. Continuous Trend Analysis versus Quantile -- Binary Poisson / Negative Binomial Regression versus Quantile -- Chapter 8. Robust Standard Errors Regressions versus Quantile -- Chapter 9. Optimal Scaling versus Quantile Regression -- Chapter 10. Intercept only Poisson Regression versus Quantile -- Part II: Multiple Variables Regressions versus Quantile -- Chapter 11. Four Predictors Regressions versus Quantile -- Chapter 12. Gene Expressions Regressions, Traditional versus Quantile -- Chapter 13. Koenker's Multiple Variables Regression with Quantile -- Chapter 14. Interaction Adjusted Regression versus Quantile -- Chapter 15. Quantile Regression to Study Corona Deaths -- Chapter 16. Laboratory Values Predict Survival Sepsis, Traditional Regression versus Quantile -- Chapter 17. Multinomial Poisson Regression versus Quantile -- Chapter 18. Regressions with Inconstant Variability versus Quantile -- Chapter 19. Restructuring Categories into Multiple Dummy Variables versus Quantile -- Chapter 20. Poisson Events per Person per Period of Time versus Quantile -- Part III: Special Regressions versus Quantile -- Chapter 21. Two Stage Least Squares Regressions versus Quantile -- Chapter 22. Partial Correlations versus Quantile Regressions -- Chapter 23. Random Intercept Regression versus Quantile -- Chapter 24. Regression Trees versus Quantile -- Chapter 25. Kernel Regression versus Quantile -- Chapter 26. Quasi-likelihood Regression versus Quantile -- Chapter 27. Summaries.
Quantile regression is an approach to data at a loss of homogeneity, for example (1) data with outliers, (2) skewed data like corona - deaths data, (3) data with inconstant variability, (4) big data. In clinical research many examples can be given like circadian phenomena, and diseases where spreading may be dependent on subsets with frailty, low weight, low hygiene, and many forms of lack of healthiness. Stratified analyses is the laborious and rather explorative way of analysis, but quantile analysis is a more fruitful, faster and completer alternative for the purpose. Considering all of this, we are on the verge of a revolution in data analysis. The current edition is the first textbook and tutorial of quantile regressions for medical and healthcare students as well as recollection/update bench, and help desk for professionals. Each chapter can be studied as a standalone and covers one of the many fields in the fast growing world of quantile regressions. Step by step analyses of over 20 data files stored at extras.springer.com are included for self-assessment. We should add that the authors are well qualified in their field. Professor Zwinderman is past-president of the International Society of Biostatistics (2012-2015) and Professor Cleophas is past-president of the American College of Angiology(2000-2002) From their expertise they should be able to make adequate selections of modern quantile regression methods for the benefit of physicians, students, and investigators.
ISBN: 9783030828400$q(electronic bk.)
Standard No.: 10.1007/978-3-030-82840-0doiSubjects--Topical Terms:
490519
Clinical medicine
--Research
LC Class. No.: R853.S7 / C54 2021
Dewey Class. No.: 610.727
National Library of Medicine Call No.: WA 950
Quantile regression in clinical researchcomplete analysis for data at a loss of homogeneity /
LDR
:04402nmm a2200337 a 4500
001
613785
003
DE-He213
005
20220117185330.0
006
m d
007
cr nn 008maaau
008
220627s2021 sz s 0 eng d
020
$a
9783030828400$q(electronic bk.)
020
$a
9783030828394$q(paper)
024
7
$a
10.1007/978-3-030-82840-0
$2
doi
035
$a
978-3-030-82840-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
R853.S7
$b
C54 2021
060
4
$a
WA 950
072
7
$a
MBGR
$2
bicssc
072
7
$a
MED000000
$2
bisacsh
072
7
$a
MBGR
$2
thema
082
0 4
$a
610.727
$2
23
090
$a
R853.S7
$b
C628 2021
100
1
$a
Cleophas, Ton J.
$3
261387
245
1 0
$a
Quantile regression in clinical research
$h
[electronic resource] :
$b
complete analysis for data at a loss of homogeneity /
$c
by Ton J. Cleophas, Aeilko H. Zwinderman.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xii, 290 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Chapter 1. General Introduction -- Chapter 2. Mathematical Models for Separating Quantiles from One Another -- Part I: Simple Univariate Regressions versus Quantile -- Chapter 3. Traditional and Robust Regressions versus Quantile -- Chapter 4. Autoregressions versus quantile -- Chapter 5. Discrete Trend Analysis versus Quantile -- Chapter 6. Continuous Trend Analysis versus Quantile -- Binary Poisson / Negative Binomial Regression versus Quantile -- Chapter 8. Robust Standard Errors Regressions versus Quantile -- Chapter 9. Optimal Scaling versus Quantile Regression -- Chapter 10. Intercept only Poisson Regression versus Quantile -- Part II: Multiple Variables Regressions versus Quantile -- Chapter 11. Four Predictors Regressions versus Quantile -- Chapter 12. Gene Expressions Regressions, Traditional versus Quantile -- Chapter 13. Koenker's Multiple Variables Regression with Quantile -- Chapter 14. Interaction Adjusted Regression versus Quantile -- Chapter 15. Quantile Regression to Study Corona Deaths -- Chapter 16. Laboratory Values Predict Survival Sepsis, Traditional Regression versus Quantile -- Chapter 17. Multinomial Poisson Regression versus Quantile -- Chapter 18. Regressions with Inconstant Variability versus Quantile -- Chapter 19. Restructuring Categories into Multiple Dummy Variables versus Quantile -- Chapter 20. Poisson Events per Person per Period of Time versus Quantile -- Part III: Special Regressions versus Quantile -- Chapter 21. Two Stage Least Squares Regressions versus Quantile -- Chapter 22. Partial Correlations versus Quantile Regressions -- Chapter 23. Random Intercept Regression versus Quantile -- Chapter 24. Regression Trees versus Quantile -- Chapter 25. Kernel Regression versus Quantile -- Chapter 26. Quasi-likelihood Regression versus Quantile -- Chapter 27. Summaries.
520
$a
Quantile regression is an approach to data at a loss of homogeneity, for example (1) data with outliers, (2) skewed data like corona - deaths data, (3) data with inconstant variability, (4) big data. In clinical research many examples can be given like circadian phenomena, and diseases where spreading may be dependent on subsets with frailty, low weight, low hygiene, and many forms of lack of healthiness. Stratified analyses is the laborious and rather explorative way of analysis, but quantile analysis is a more fruitful, faster and completer alternative for the purpose. Considering all of this, we are on the verge of a revolution in data analysis. The current edition is the first textbook and tutorial of quantile regressions for medical and healthcare students as well as recollection/update bench, and help desk for professionals. Each chapter can be studied as a standalone and covers one of the many fields in the fast growing world of quantile regressions. Step by step analyses of over 20 data files stored at extras.springer.com are included for self-assessment. We should add that the authors are well qualified in their field. Professor Zwinderman is past-president of the International Society of Biostatistics (2012-2015) and Professor Cleophas is past-president of the American College of Angiology(2000-2002) From their expertise they should be able to make adequate selections of modern quantile regression methods for the benefit of physicians, students, and investigators.
650
0
$a
Clinical medicine
$x
Research
$x
Statistical methods.
$3
490519
650
0
$a
Quantile regression.
$3
709809
650
1 4
$a
Clinical Research.
$3
911843
650
2 4
$a
Applied Statistics.
$3
805583
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
275288
650
2 4
$a
Big Data.
$3
760530
700
1
$a
Zwinderman, Aeilko H.
$3
261385
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-030-82840-0
950
$a
Biomedical and Life Sciences (SpringerNature-11642)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000207315
電子館藏
1圖書
電子書
EB R853.S7 C628 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-82840-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入