語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Non-gaussian autoregressive-type tim...
~
Balakrishna, N.
Non-gaussian autoregressive-type time series
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Non-gaussian autoregressive-type time seriesby N. Balakrishna.
作者:
Balakrishna, N.
出版者:
Singapore :Springer Singapore :2021.
面頁冊數:
1 online resource (xviii, 225 p.) :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Time-series analysis.
電子資源:
https://doi.org/10.1007/978-981-16-8162-2
ISBN:
9789811681622$q(electronic bk.)
Non-gaussian autoregressive-type time series
Balakrishna, N.
Non-gaussian autoregressive-type time series
[electronic resource] /by N. Balakrishna. - Singapore :Springer Singapore :2021. - 1 online resource (xviii, 225 p.) :ill., digital ;24 cm.
1. Basics of Time Series -- 2. Statistical Inference for Stationary Time Series -- 3. AR Models with Stationary Non-Gaussian Positive Marginals -- 4. AR Models with Stationary Non-Gaussian Real-Valued Marginals -- 5. Some Nonlinear AR-type Models for Non-Gaussian Time series -- 6. Linear Time Series Models with Non-Gaussian Innovations -- 7. Autoregressive-type Time Series of Counts.
This book brings together a variety of non-Gaussian autoregressive-type models to analyze time-series data. This book collects and collates most of the available models in the field and provide their probabilistic and inferential properties. This book classifies the stationary time-series models into different groups such as linear stationary models with non-Gaussian innovations, linear stationary models with non-Gaussian marginal distributions, product autoregressive models and minification models. Even though several non-Gaussian time-series models are available in the literature, most of them are focusing on the model structure and the probabilistic properties.
ISBN: 9789811681622$q(electronic bk.)
Standard No.: 10.1007/978-981-16-8162-2doiSubjects--Topical Terms:
181890
Time-series analysis.
LC Class. No.: QA280 / B35 2021
Dewey Class. No.: 519.55
Non-gaussian autoregressive-type time series
LDR
:02053nmm a2200325 a 4500
001
614876
003
DE-He213
005
20220127200312.0
006
m o d
007
cr nn 008maaau
008
220802s2021 si s 0 eng d
020
$a
9789811681622$q(electronic bk.)
020
$a
9789811681615$q(paper)
024
7
$a
10.1007/978-981-16-8162-2
$2
doi
035
$a
978-981-16-8162-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA280
$b
B35 2021
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
082
0 4
$a
519.55
$2
23
090
$a
QA280
$b
.B171 2021
100
1
$a
Balakrishna, N.
$3
913396
245
1 0
$a
Non-gaussian autoregressive-type time series
$h
[electronic resource] /
$c
by N. Balakrishna.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2021.
300
$a
1 online resource (xviii, 225 p.) :
$b
ill., digital ;
$c
24 cm.
505
0
$a
1. Basics of Time Series -- 2. Statistical Inference for Stationary Time Series -- 3. AR Models with Stationary Non-Gaussian Positive Marginals -- 4. AR Models with Stationary Non-Gaussian Real-Valued Marginals -- 5. Some Nonlinear AR-type Models for Non-Gaussian Time series -- 6. Linear Time Series Models with Non-Gaussian Innovations -- 7. Autoregressive-type Time Series of Counts.
520
$a
This book brings together a variety of non-Gaussian autoregressive-type models to analyze time-series data. This book collects and collates most of the available models in the field and provide their probabilistic and inferential properties. This book classifies the stationary time-series models into different groups such as linear stationary models with non-Gaussian innovations, linear stationary models with non-Gaussian marginal distributions, product autoregressive models and minification models. Even though several non-Gaussian time-series models are available in the literature, most of them are focusing on the model structure and the probabilistic properties.
650
0
$a
Time-series analysis.
$3
181890
650
1 4
$a
Time Series Analysis.
$3
913397
650
2 4
$a
Bayesian Inference.
$3
825978
650
2 4
$a
Statistics.
$3
182057
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-981-16-8162-2
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000208175
電子館藏
1圖書
電子書
EB QA280 .B171 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-981-16-8162-2
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入