銳鈦礦二氧化鈦奈米粉體製備及其複合型光電極於染料敏化太陽能電池特性研究 ...
國立高雄大學化學工程及材料工程學系碩士班

 

  • 銳鈦礦二氧化鈦奈米粉體製備及其複合型光電極於染料敏化太陽能電池特性研究 = Preparation and Characteristics of Anatase TiO2 Nanoparticles and Its Composite Photoelectrode for Dye-Sensitized Solar Cells
  • 紀錄類型: 書目-語言資料,印刷品 : 單行本
    並列題名: Preparation and Characteristics of Anatase TiO2 Nanoparticles and Its Composite Photoelectrode for Dye-Sensitized Solar Cells
    作者: 蕭宏安,
    其他團體作者: 國立高雄大學
    出版地: [高雄市]
    出版者: 撰者;
    出版年: 民99[2010]
    面頁冊數: 95面圖,表 : 30公分;
    標題: 二氧化鈦
    標題: TiO2
    電子資源: http://handle.ncl.edu.tw/11296/ndltd/08919892017265781210
    摘要註: 二氧化鈦奈米粉體其製備方式以液相法中的溶膠-凝膠法較為常見,而溶膠-凝膠法所合成出的二氧化鈦奈米粉體其晶相結構通常以金紅石、銳鈦礦及板鈦礦三種晶相結構共存,較少以單一晶相結構存在。銳鈦礦晶相結構的二氧化鈦其特性有助於電子傳遞,且其電子-電洞對的再結合速率較其他晶相結構低,因此較適合用來當作染料敏化太陽能電池中的光電極。 為了製備出純銳鈦礦二氧化鈦奈米粉體,本研究設計了兩階段水熱法反應製程,第一階段用以合成出Na2Ti9O19晶體結構的鈦酸鹽,因為Na2Ti9O19結構中的TiO6八面體結構是以共邊結構的形式堆疊而成,與銳鈦礦二氧化鈦結構中的TiO6八面體結構所堆疊的形式一樣,因此Na2Ti9O19可做為製備出純銳鈦礦二氧化鈦的中間產物。第二階段利用HNO3結構中的H+與Na2Ti9O19結構中的Na+進行離子交換反應,使其結構崩解,進而生成純銳鈦礦二氧化鈦奈米粉體。 本研究所合成的粉體其粒徑大小介於7 ~ 10 nm,可能會因為粒徑小表面能大,進而團聚成更大的顆粒,而導致粉體其流動性及堆積密度較差,因此吾人在製備漿料時同時使用靜電及空間排斥機制來解決此問題。經由比表面積值量測證實同時使用靜電及空間排斥機制(BET = 81.594 m2g-1)較單一使用靜電排斥機制(BET = 68.071 m2g-1)來得好,分別將其製作成光電極(膜厚約6 μm)並組成元件,其光電轉換效率分別為6.23 %及4.66 %。 染料敏化太陽能電池若能製作在可撓性基板上,並將能提升其應用範圍。因此將本研究所合成之粉體塗佈在ITO/PET基板於100 ℃成膜後,做一簡易的可撓性測試,基板在彎曲時及彎曲後,其薄膜都並未產生脫膜及碎裂等現象,因此可以證實本研究所合成之粉體在低溫成膜的環境下,保有原來一定程度的的附著性、延展性及韌性。 TiO2 nanoparticles is often prepared using a sol-gel method in liquid phase. Three crystal phases: rutile, anatase, and brookite, often coexist in TiO2 nanoparticles, while single-phase crystals are really present. Anatase TiO2 allows for easier electron transfer and the rate of recombination of electrons and electron hole pairs is lower than that of other crystal phases. These properties make anatase TiO2 nanoparticles suitable for use in the production of photoelectrode for dye-sensitized solar cells. In this study, we used two stages hydrothermal method to produce pure anatase TiO2 nanoparticles. In the first stage, sodium titanates with Na2Ti9O19 crystal structure was formed. Because the TiO6 octahedral structure in Na2Ti9O19 shared edges similar to those of TiO6 octahedral formed in anatase TiO2, Na2Ti9O19 was used to prepare an intermediate form of pure anatase TiO2. In the second stage, H+ in HNO3 was used to ion-exchange with Na+ in Na2Ti9O19, in order to dissolve the crystal structure in the formation of pure anatase TiO2 nanoparticles. The particles prepared in this study had a radius of between 7 and 10 nm, which could be increased when the particles combined, thereby decreasing the mobility, and stacking density of the particles. For this reason, we used both static and spatial repulsion mechanisms (BET = 81.594 m2g-1) to alleviate this problem. This approach produced superior results to that of a static repulsion mechanism (BET = 68.071 m2g-1) used alone. The photoelectrodes produced from the resulting materials had a film thickness of approximately 6 μm, and the device’s energy conversion efficiency of 6.23 % and 4.66 %, respectively. Flexible substrates can be used in the application of dye-sensitized solar cells. In this study, we coated TiO2 particles on ITO/PET substrate at 100 ℃ and performed a simple flexibility test. Results showed that both the film did not fall off or crack before and after the substrates were bent. This affirmed that the particles produced in this study was able to retain its adhesion, malleability, and toughness even when formed into films at low temperature.
館藏
  • 2 筆 • 頁數 1 •
 
310002026915 博碩士論文區(二樓) 不外借資料 學位論文 TH 008M/0019 541208 4433 2010 一般使用(Normal) 在架 0
310002026923 博碩士論文區(二樓) 不外借資料 學位論文 TH 008M/0019 541208 4433 2010 c.2 一般使用(Normal) 在架 0
  • 2 筆 • 頁數 1 •
評論
Export
取書館別
 
 
變更密碼
登入