Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
一個有效率的隨機匹配追蹤演算法及其應用 = An Efficient S...
~
國立高雄大學統計學研究所
一個有效率的隨機匹配追蹤演算法及其應用 = An Efficient Stochastic Matching Pursuit Algorithm and its Applications
Record Type:
Language materials, printed : monographic
Paralel Title:
An Efficient Stochastic Matching Pursuit Algorithm and its Applications
Author:
蔡雨潔,
Secondary Intellectual Responsibility:
國立高雄大學
Place of Publication:
[高雄市]
Published:
撰者;
Year of Publication:
民99[2010]
Description:
27面圖,表 : 30公分;
Subject:
吉布斯抽樣
Subject:
Gibbs sampler
Online resource:
http://handle.ncl.edu.tw/11296/ndltd/00431189126162056804
Summary:
隨機匹配追蹤演算法在貝氏變數選取中有很好的效能。在這篇論文中,首先我們提出一個隨機匹配追蹤演算法的完全貝氏版本,接著介紹一個針對此演算法更有效率的計算方法。然後我們將此隨機匹配追蹤演算法應用在聲音去噪的問題上,利用一些模擬和實際的聲音例子來驗證此演算法的效能。 The stochastic matching pursuit algorithm, proposed by Chen et al. (2009), performs well in Bayesian variable selection. In this thesis, the full Bayesian version of the stochastic matching pursuit algorithm is first proposed and then an efficient computing approach of this algorithm is introduced. Next we focus on applying the stochastic matching pursuit algorithm in the denoising problem. Several simulations and real sound examples are used to demonstrate the performance of the algorithm.
一個有效率的隨機匹配追蹤演算法及其應用 = An Efficient Stochastic Matching Pursuit Algorithm and its Applications
蔡, 雨潔
一個有效率的隨機匹配追蹤演算法及其應用
= An Efficient Stochastic Matching Pursuit Algorithm and its Applications / 蔡雨潔撰 - [高雄市] : 撰者, 民99[2010]. - 27面 ; 圖,表 ; 30公分.
參考書目:面.
吉布斯抽樣Gibbs sampler
一個有效率的隨機匹配追蹤演算法及其應用 = An Efficient Stochastic Matching Pursuit Algorithm and its Applications
LDR
:01964nam0a2200277 450
001
272937
005
20170214090329.0
009
272937
010
0
$b
精裝
010
0
$b
平裝
100
$a
20170214y2010 k y0chiy05 b
101
1
$a
eng
$d
chi
$d
eng
102
$a
tw
105
$a
ak am 000yy
200
1
$a
一個有效率的隨機匹配追蹤演算法及其應用
$d
An Efficient Stochastic Matching Pursuit Algorithm and its Applications
$f
蔡雨潔撰
210
$a
[高雄市]
$c
撰者
$d
民99[2010]
215
0
$a
27面
$c
圖,表
$d
30公分
314
$a
指導教授:陳瑞彬教授
320
$a
參考書目:面
328
$a
碩士論文--國立高雄大學統計學研究所
330
$a
隨機匹配追蹤演算法在貝氏變數選取中有很好的效能。在這篇論文中,首先我們提出一個隨機匹配追蹤演算法的完全貝氏版本,接著介紹一個針對此演算法更有效率的計算方法。然後我們將此隨機匹配追蹤演算法應用在聲音去噪的問題上,利用一些模擬和實際的聲音例子來驗證此演算法的效能。 The stochastic matching pursuit algorithm, proposed by Chen et al. (2009), performs well in Bayesian variable selection. In this thesis, the full Bayesian version of the stochastic matching pursuit algorithm is first proposed and then an efficient computing approach of this algorithm is introduced. Next we focus on applying the stochastic matching pursuit algorithm in the denoising problem. Several simulations and real sound examples are used to demonstrate the performance of the algorithm.
510
1
$a
An Efficient Stochastic Matching Pursuit Algorithm and its Applications
610
0
$a
吉布斯抽樣
$a
梅托普利斯演算法
$a
去噪
610
1
$a
Gibbs sampler
$a
Metropolis algorithm
$a
denoising
681
$a
008M/0019
$b
343201 4413
$v
2007年版
700
1
$a
蔡
$b
雨潔
$4
撰
$3
483091
712
0 2
$a
國立高雄大學
$b
統計學研究所
$3
166081
801
0
$a
tw
$b
國立高雄大學
$c
20101224
$g
CCR
856
7
$z
電子資源
$2
http
$u
http://handle.ncl.edu.tw/11296/ndltd/00431189126162056804
based on 0 review(s)
ALL
博碩士論文區(二樓)
Items
2 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
310002027038
博碩士論文區(二樓)
不外借資料
學位論文
TH 008M/0019 343201 4413 2010
一般使用(Normal)
On shelf
0
310002027046
博碩士論文區(二樓)
不外借資料
學位論文
TH 008M/0019 343201 4413 2010 c.2
一般使用(Normal)
On shelf
0
2 records • Pages 1 •
1
Multimedia
Multimedia file
http://handle.ncl.edu.tw/11296/ndltd/00431189126162056804
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login