Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
巴拿赫空間上的高斯測度之拓樸擔台的研究 = The study of t...
~
國立高雄大學應用數學系碩士班
巴拿赫空間上的高斯測度之拓樸擔台的研究 = The study of the topological support of a Gaussian measure in a Banach space
Record Type:
Language materials, printed : monographic
Paralel Title:
The study of the topological support of a Gaussian measure in a Banach space
Author:
林奕均,
Secondary Intellectual Responsibility:
國立高雄大學
Place of Publication:
[高雄市]
Published:
撰者;
Year of Publication:
2012[民101]
Description:
3, 20面圖,表格 : 30公分;
Subject:
拓樸擔台
Subject:
topological support
Online resource:
http://handle.ncl.edu.tw/11296/ndltd/57630668531135659916
Notes:
參考書目:面20
Summary:
在參考文獻[4]中,伊藤證明了對於一個在實可分希爾伯特空間上的高斯測度,其拓樸擔台恰為最小的閉子空間且測度為1。本學位論文主要研究如何將伊藤的結果推廣到定義在實可分巴拿赫空間上且期望值為零的高斯測度。最後,我們將提供一種由(β,μ) 建構標準可數希爾伯特空間的方法作為一個簡單的應用。 In [4] , K . Itô showed that for a given Gaussian measure on a real separable Hilbert space , it’s topological support coincides with the least closed subspace with the total measure. The purpose of this study will be devoted to extend Itô’s result to a Gaussian measure on a real separable Banach space. As a simple application , for any real separable Banach space B on which a Gaussian measure with zero mean is given , a method to construct a standard countably Hilbert space setting from (β,μ) will be presented .
巴拿赫空間上的高斯測度之拓樸擔台的研究 = The study of the topological support of a Gaussian measure in a Banach space
林, 奕均
巴拿赫空間上的高斯測度之拓樸擔台的研究
= The study of the topological support of a Gaussian measure in a Banach space / 林奕均撰 - [高雄市] : 撰者, 2012[民101]. - 3, 20面 ; 圖,表格 ; 30公分.
參考書目:面20.
拓樸擔台topological support
巴拿赫空間上的高斯測度之拓樸擔台的研究 = The study of the topological support of a Gaussian measure in a Banach space
LDR
:02077nam a2200277 4500
001
346255
005
20170214090717.0
009
346255
010
0
$b
精裝
010
0
$b
平裝
100
$a
20170214d2012 k y0chiy05 e
101
1
$a
eng
$d
chi
$d
eng
102
$a
tw
105
$a
ak am 000yy
200
1
$a
巴拿赫空間上的高斯測度之拓樸擔台的研究
$d
The study of the topological support of a Gaussian measure in a Banach space
$z
eng
$f
林奕均撰
210
$a
[高雄市]
$c
撰者
$d
2012[民101]
215
0
$a
3, 20面
$c
圖,表格
$d
30公分
300
$a
參考書目:面20
314
$a
指導教授:施信宏
328
$a
碩士論文--國立高雄大學應用數學系碩士班
330
$a
在參考文獻[4]中,伊藤證明了對於一個在實可分希爾伯特空間上的高斯測度,其拓樸擔台恰為最小的閉子空間且測度為1。本學位論文主要研究如何將伊藤的結果推廣到定義在實可分巴拿赫空間上且期望值為零的高斯測度。最後,我們將提供一種由(β,μ) 建構標準可數希爾伯特空間的方法作為一個簡單的應用。 In [4] , K . Itô showed that for a given Gaussian measure on a real separable Hilbert space , it’s topological support coincides with the least closed subspace with the total measure. The purpose of this study will be devoted to extend Itô’s result to a Gaussian measure on a real separable Banach space. As a simple application , for any real separable Banach space B on which a Gaussian measure with zero mean is given , a method to construct a standard countably Hilbert space setting from (β,μ) will be presented .
510
1
$a
The study of the topological support of a Gaussian measure in a Banach space
$z
eng
610
0
$a
拓樸擔台
$a
高斯測度
$a
巴拿赫空間
$a
可數希爾伯特空間
610
1
$a
topological support
$a
Gaussian measure
$a
Banach space
$a
countably Hilbert space
681
$a
008M/0019
$b
462101 4404
$v
2007年版
700
1
$a
林
$b
奕均
$4
撰
$3
576461
712
0 2
$a
國立高雄大學
$b
應用數學系碩士班
$3
166142
801
0
$a
tw
$b
NUK
$c
20121107
$g
CCR
856
7
$z
電子資源
$2
http
$u
http://handle.ncl.edu.tw/11296/ndltd/57630668531135659916
based on 0 review(s)
ALL
博碩士論文區(二樓)
Items
2 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
310002292376
博碩士論文區(二樓)
不外借資料
學位論文
TH 008M/0019 462101 4404 2012
一般使用(Normal)
On shelf
0
310002292384
博碩士論文區(二樓)
不外借資料
學位論文
TH 008M/0019 462101 4404 2012 c.2
一般使用(Normal)
On shelf
0
2 records • Pages 1 •
1
Multimedia
Multimedia file
http://handle.ncl.edu.tw/11296/ndltd/57630668531135659916
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login