以賽局理論設計最大獨立集合自我穩定演算法 = A Game-theore...
國立高雄大學資訊工程學系碩士班

 

  • 以賽局理論設計最大獨立集合自我穩定演算法 = A Game-theoretic Approach to Self-Stabilizing Maximal Independent Set Algorithm
  • Record Type: Language materials, printed : monographic
    Paralel Title: A Game-theoretic Approach to Self-Stabilizing Maximal Independent Set Algorithm
    Author: 黃靖軺,
    Secondary Intellectual Responsibility: 國立高雄大學
    Place of Publication: [高雄市]
    Published: 撰者;
    Year of Publication: 2014[民103]
    Description: 57面圖,表 : 30公分;
    Subject: 最大獨立集合
    Subject: Maximal Independent Set
    Online resource: http://handle.ncl.edu.tw/11296/ndltd/64538152023134070245
    Notes: 105年10月25日公開
    Notes: 參考書目:面44-46
    Summary: 圖論中的最大獨立集合(maximal independent set)問題是從一個無向圖G中的節點集合V挑選部分的節點集合S,需滿足在S當中不存在任何兩節點相鄰且S不為其它任一獨立集合的子集合。本篇論文透過賽局理論(game theory)尋求較佳的最大獨立集合問題解,並且證明最大獨立集合賽局必定會收斂至納許均衡(Nash equilibrium)。我們接著將賽局設計轉換為在分散式系統中運作的自我穩定演算法。自我穩定(self-stabilization)的性質可以保證不論系統初始狀態為何,必定會在有限的時間內到達穩定的合法狀態,即最大獨立集合。為了使我們提出的方法能在無線網路中有效的實作,需另外再對演算法進行修改以克服環境上的差異。模擬實驗結果顯示我們提出的演算法有較好的效能表現,比先前的方法有較多的最大獨立集合節點數以及較短的收斂時間。 Given an undirected graph G = (V, E), S ⊆ V is an independent set if no nodes in S are adjacent to one another. An independent set S is maximal if no proper subset of S is an independent set. Maximal independent set problem is to find such a set S. This paper proposes a solution to this problem based on game theory. We turn the solution into a self-stabilizing algorithm running in distributed systems. The self-stability property ensures that system will enter legitimate system states in limited time regardless of initial configurations. We then convert the algorithm into a protocol for wireless networks. Simulation results indicate that the proposed approach performs better than previous work in terms of independent set size and convergence time.
Items
  • 2 records • Pages 1 •
 
310002634213 博碩士論文區(二樓) 不外借資料 學位論文 TH 008M/0019 464103 4405 2014 一般使用(Normal) On shelf 0
310002634221 博碩士論文區(二樓) 不外借資料 學位論文 TH 008M/0019 464103 4405 2014 c.2 一般使用(Normal) On shelf 0
  • 2 records • Pages 1 •
Reviews
Export
pickup library
 
 
Change password
Login