Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Data mining and machine learning in ...
~
Du, Xian, (Ph.D.)
Data mining and machine learning in cybersecurity
Record Type:
Electronic resources : Monograph/item
Title/Author:
Data mining and machine learning in cybersecuritySumeet Dua and Xian Du.
Author:
Dua, Sumeet.
other author:
Du, Xian,
Published:
Boca Raton :CRC Press,c2011.
Description:
1 online resource (1 v.) :ill.
Subject:
Data mining.
Online resource:
http://www.crcnetbase.com/doi/book/10.1201/b10867
ISBN:
9781439839430 (electronic bk.)
Data mining and machine learning in cybersecurity
Dua, Sumeet.
Data mining and machine learning in cybersecurity
[electronic resource] /Sumeet Dua and Xian Du. - Boca Raton :CRC Press,c2011. - 1 online resource (1 v.) :ill.
Includes bibliographical references and index.
Machine generated contents note: 1.Introduction -- 1.1.Cybersecurity -- 1.2.Data Mining -- 1.3.Machine Learning -- 1.4.Review of Cybersecurity Solutions -- 1.4.1.Proactive Security Solutions -- 1.4.2.Reactive Security Solutions -- 1.4.2.1.Misuse/Signature Detection -- 1.4.2.2.Anomaly Detection -- 1.4.2.3.Hybrid Detection -- 1.4.2.4.Scan Detection -- 1.4.2.5.Profiling Modules -- 1.5.Summary -- 1.6.Further Reading -- References -- 2.Classical Machine-Learning Paradigms for Data Mining -- 2.1.Machine Learning -- 2.1.1.Fundamentals of Supervised Machine-Learning Methods -- 2.1.1.1.Association Rule Classification -- 2.1.1.2.Artificial Neural Network -- 2.1.1.3.Support Vector Machines -- 2.1.1.4.Decision Trees -- 2.1.1.5.Bayesian Network -- 2.1.1.6.Hidden Markov Model -- 2.1.1.7.Kalman Filter -- 2.1.1.8.Bootstrap, Bagging, and AdaBoost -- 2.1.1.9.Random Forest -- 2.1.2.Popular Unsupervised Machine-Learning Methods -- 2.1.2.1.k-Means Clustering -- 2.1.2.2.Expectation Maximum -- 2.1.2.3.k-Nearest Neighbor -- 2.1.2.4.SOM ANN -- 2.1.2.5.Principal Components Analysis -- 2.1.2.6.Subspace Clustering -- 2.2.Improvements on Machine-Learning Methods -- 2.2.1.New Machine-Learning Algorithms -- 2.2.2.Resampling -- 2.2.3.Feature Selection Methods -- 2.2.4.Evaluation Methods -- 2.2.5.Cross Validation -- 2.3.Challenges -- 2.3.1.Challenges in Data Mining -- 2.3.1.1.Modeling Large-Scale Networks -- 2.3.1.2.Discovery of Threats -- 2.3.1.3.Network Dynamics and Cyber Attacks -- 2.3.1.4.Privacy Preservation in Data Mining -- 2.3.2.Challenges in Machine Learning (Supervised Learning and Unsupervised Learning) -- 2.3.2.1.Online Learning Methods for Dynamic Modeling of Network Data -- 2.3.2.2.Modeling Data with Skewed Class Distributions to Handle Rare Event Detection -- 2.3.2.3.Feature Extraction for Data with Evolving Characteristics -- 2.4.Research Directions -- 2.4.1.Understanding the Fundamental Problems of Machine-Learning Methods in Cybersecurity -- 2.4.2.Incremental Learning in Cyberinfrastructures -- 2.4.3.Feature Selection/Extraction for Data with Evolving Characteristics -- 2.4.4.Privacy-Preserving Data Mining -- 2.5.Summary -- References -- 3.Supervised Learning for Misuse/Signature Detection -- 3.1.Misuse/Signature Detection -- 3.2.Machine Learning in Misuse/Signature Detection -- 3.3.Machine-Learning Applications in Misuse Detection -- 3.3.1.Rule-Based Signature Analysis -- 3.3.1.1.Classification Using Association Rules -- 3.3.1.2.Fuzzy-Rule-Based -- 3.3.2.Artificial Neural Network -- 3.3.3.Support Vector Machine -- 3.3.4.Genetic Programming -- 3.3.5.Decision Tree and CART -- 3.3.5.1.Decision-Tree Techniques -- 3.3.5.2.Application of a Decision Tree in Misuse Detection -- 3.3.5.3.CART -- 3.3.6.Bayesian Network -- 3.3.6.1.Bayesian Network Classifier -- 3.3.6.2.Naive Bayes -- 3.4.Summary -- References -- 4.Machine Learning for Anomaly Detection -- 4.1.Introduction -- 4.2.Anomaly Detection -- 4.3.Machine Learning in Anomaly Detection Systems -- 4.4.Machine-Learning Applications in Anomaly Detection -- 4.4.1.Rule-Based Anomaly Detection (Table 1.3, C.6) -- 4.4.1.1.Fuzzy Rule-Based (Table 1.3, C.6) -- 4.4.2.ANN (Table 1.3, C.9) -- 4.4.3.Support Vector Machines (Table 1.3, C.12) -- 4.4.4.Nearest Neighbor-Based Learning (Table 1.3, C.11) -- 4.4.5.Hidden Markov Model -- 4.4.6.Kalman Filter -- 4.4.7.Unsupervised Anomaly Detection -- 4.4.7.1.Clustering-Based Anomaly Detection -- 4.4.7.2.Random Forests -- 4.4.7.3.Principal Component Analysis/Subspace -- 4.4.7.4.One-Class Supervised Vector Machine -- 4.4.8.Information Theoretic (Table 1.3, C.5) -- 4.4.9.Other Machine-Learning Methods Applied in Anomaly Detection (Table 1.3, C.2) -- 4.5.Summary -- References -- 5.Machine Learning for Hybrid Detection -- 5.1.Hybrid Detection -- 5.2.Machine Learning in Hybrid Intrusion Detection Systems -- 5.3.Machine-Learning Applications in Hybrid Intrusion Detection -- 5.3.1.Anomaly-Misuse Sequence Detection System -- 5.3.2.Association Rules in Audit Data Analysis and Mining (Table 1.4, D.4) -- 5.3.3.Misuse-Anomaly Sequence Detection System -- 5.3.4.Parallel Detection System -- 5.3.5.Complex Mixture Detection System -- 5.3.6.Other Hybrid Intrusion Systems -- 5.4.Summary -- References -- 6.Machine Learning for Scan Detection -- 6.1.Scan and Scan Detection -- 6.2.Machine Learning in Scan Detection -- 6.3.Machine-Learning Applications in Scan Detection -- 6.4.Other Scan Techniques with Machine-Learning Methods -- 6.5.Summary -- References -- 7.Machine Learning for Profiling Network Traffic -- 7.1.Introduction -- 7.2.Network Traffic Profiling and Related Network Traffic Knowledge -- 7.3.Machine Learning and Network Traffic Profiling -- 7.4.Data-Mining and Machine-Learning Applications in Network Profiling -- 7.4.1.Other Profiling Methods and Applications -- 7.5.Summary -- References -- 8.Privacy-Preserving Data Mining -- 8.1.Privacy Preservation Techniques in PPDM -- 8.1.1.Notations -- 8.1.2.Privacy Preservation in Data Mining -- 8.2.Workflow of PPDM -- 8.2.1.Introduction of the PPDM Workflow -- 8.2.2.PPDM Algorithms -- 8.2.3.Performance Evaluation of PPDM Algorithms -- 8.3.Data-Mining and Machine-Learning Applications in PPDM -- 8.3.1.Privacy Preservation Association Rules (Table 1.1, A.4) -- 8.3.2.Privacy Preservation Decision Tree (Table 1.1, A.6) -- 8.3.3.Privacy Preservation Bayesian Network (Table 1.1, A.2) -- 8.3.4.Privacy Preservation KNN (Table 1.1, A.7) -- 8.3.5.Privacy Preservation k-Means Clustering (Table 1.1, A.3) -- 8.3.6.Other PPDM Methods -- 8.4.Summary -- References -- 9.Emerging Challenges in Cybersecurity -- 9.1.Emerging Cyber Threats -- 9.1.1.Threats from Malware -- 9.1.2.Threats from Botnets -- 9.1.3.Threats from Cyber Warfare -- 9.1.4.Threats from Mobile Communication -- 9.1.5.Cyber Crimes -- 9.2.Network Monitoring, Profiling, and Privacy Preservation -- 9.2.1.Privacy Preservation of Original Data -- 9.2.2.Privacy Preservation in the Network Traffic Monitoring and Profiling Algorithms -- 9.2.3.Privacy Preservation of Monitoring and Profiling Data -- 9.2.4.Regulation, Laws, and Privacy Preservation -- 9.2.5.Privacy Preservation, Network Monitoring, and Profiling Example: PRISM -- 9.3.Emerging Challenges in Intrusion Detection -- 9.3.1.Unifying the Current Anomaly Detection Systems -- 9.3.2.Network Traffic Anomaly Detection -- 9.3.3.Imbalanced Learning Problem and Advanced Evaluation Metrics for IDS -- 9.3.4.Reliable Evaluation Data Sets or Data Generation Tools -- 9.3.5.Privacy Issues in Network Anomaly Detection -- 9.4.Summary -- References.
ISBN: 9781439839430 (electronic bk.)Subjects--Topical Terms:
184440
Data mining.
LC Class. No.: QA76.9.D343 / D825 2011
Dewey Class. No.: 005.8
Data mining and machine learning in cybersecurity
LDR
:07430cmm a2200253Ia 4500
001
442671
003
OCoLC
005
20141103113419.0
006
m o d
007
cr |n|||||||||
008
150128s2011 flua ob 001 0 eng d
020
$a
9781439839430 (electronic bk.)
020
$a
1439839433 (electronic bk.)
020
$z
9781439839423 (hardback)
035
$a
(OCoLC)740893011
$z
(OCoLC)879853963
035
$a
ocn740893011
040
$a
UPM
$c
UPM
$d
B24X7
$d
COO
$d
GZM
$d
OCLCQ
$d
YDXCP
$d
OCLCF
$d
UMI
$d
DEBBG
$d
DEBSZ
050
4
$a
QA76.9.D343
$b
D825 2011
082
0 4
$a
005.8
$2
22
100
1
$a
Dua, Sumeet.
$3
511116
245
1 0
$a
Data mining and machine learning in cybersecurity
$h
[electronic resource] /
$c
Sumeet Dua and Xian Du.
260
$a
Boca Raton :
$b
CRC Press,
$c
c2011.
300
$a
1 online resource (1 v.) :
$b
ill.
504
$a
Includes bibliographical references and index.
505
0
$a
Machine generated contents note: 1.Introduction -- 1.1.Cybersecurity -- 1.2.Data Mining -- 1.3.Machine Learning -- 1.4.Review of Cybersecurity Solutions -- 1.4.1.Proactive Security Solutions -- 1.4.2.Reactive Security Solutions -- 1.4.2.1.Misuse/Signature Detection -- 1.4.2.2.Anomaly Detection -- 1.4.2.3.Hybrid Detection -- 1.4.2.4.Scan Detection -- 1.4.2.5.Profiling Modules -- 1.5.Summary -- 1.6.Further Reading -- References -- 2.Classical Machine-Learning Paradigms for Data Mining -- 2.1.Machine Learning -- 2.1.1.Fundamentals of Supervised Machine-Learning Methods -- 2.1.1.1.Association Rule Classification -- 2.1.1.2.Artificial Neural Network -- 2.1.1.3.Support Vector Machines -- 2.1.1.4.Decision Trees -- 2.1.1.5.Bayesian Network -- 2.1.1.6.Hidden Markov Model -- 2.1.1.7.Kalman Filter -- 2.1.1.8.Bootstrap, Bagging, and AdaBoost -- 2.1.1.9.Random Forest -- 2.1.2.Popular Unsupervised Machine-Learning Methods -- 2.1.2.1.k-Means Clustering -- 2.1.2.2.Expectation Maximum -- 2.1.2.3.k-Nearest Neighbor -- 2.1.2.4.SOM ANN -- 2.1.2.5.Principal Components Analysis -- 2.1.2.6.Subspace Clustering -- 2.2.Improvements on Machine-Learning Methods -- 2.2.1.New Machine-Learning Algorithms -- 2.2.2.Resampling -- 2.2.3.Feature Selection Methods -- 2.2.4.Evaluation Methods -- 2.2.5.Cross Validation -- 2.3.Challenges -- 2.3.1.Challenges in Data Mining -- 2.3.1.1.Modeling Large-Scale Networks -- 2.3.1.2.Discovery of Threats -- 2.3.1.3.Network Dynamics and Cyber Attacks -- 2.3.1.4.Privacy Preservation in Data Mining -- 2.3.2.Challenges in Machine Learning (Supervised Learning and Unsupervised Learning) -- 2.3.2.1.Online Learning Methods for Dynamic Modeling of Network Data -- 2.3.2.2.Modeling Data with Skewed Class Distributions to Handle Rare Event Detection -- 2.3.2.3.Feature Extraction for Data with Evolving Characteristics -- 2.4.Research Directions -- 2.4.1.Understanding the Fundamental Problems of Machine-Learning Methods in Cybersecurity -- 2.4.2.Incremental Learning in Cyberinfrastructures -- 2.4.3.Feature Selection/Extraction for Data with Evolving Characteristics -- 2.4.4.Privacy-Preserving Data Mining -- 2.5.Summary -- References -- 3.Supervised Learning for Misuse/Signature Detection -- 3.1.Misuse/Signature Detection -- 3.2.Machine Learning in Misuse/Signature Detection -- 3.3.Machine-Learning Applications in Misuse Detection -- 3.3.1.Rule-Based Signature Analysis -- 3.3.1.1.Classification Using Association Rules -- 3.3.1.2.Fuzzy-Rule-Based -- 3.3.2.Artificial Neural Network -- 3.3.3.Support Vector Machine -- 3.3.4.Genetic Programming -- 3.3.5.Decision Tree and CART -- 3.3.5.1.Decision-Tree Techniques -- 3.3.5.2.Application of a Decision Tree in Misuse Detection -- 3.3.5.3.CART -- 3.3.6.Bayesian Network -- 3.3.6.1.Bayesian Network Classifier -- 3.3.6.2.Naive Bayes -- 3.4.Summary -- References -- 4.Machine Learning for Anomaly Detection -- 4.1.Introduction -- 4.2.Anomaly Detection -- 4.3.Machine Learning in Anomaly Detection Systems -- 4.4.Machine-Learning Applications in Anomaly Detection -- 4.4.1.Rule-Based Anomaly Detection (Table 1.3, C.6) -- 4.4.1.1.Fuzzy Rule-Based (Table 1.3, C.6) -- 4.4.2.ANN (Table 1.3, C.9) -- 4.4.3.Support Vector Machines (Table 1.3, C.12) -- 4.4.4.Nearest Neighbor-Based Learning (Table 1.3, C.11) -- 4.4.5.Hidden Markov Model -- 4.4.6.Kalman Filter -- 4.4.7.Unsupervised Anomaly Detection -- 4.4.7.1.Clustering-Based Anomaly Detection -- 4.4.7.2.Random Forests -- 4.4.7.3.Principal Component Analysis/Subspace -- 4.4.7.4.One-Class Supervised Vector Machine -- 4.4.8.Information Theoretic (Table 1.3, C.5) -- 4.4.9.Other Machine-Learning Methods Applied in Anomaly Detection (Table 1.3, C.2) -- 4.5.Summary -- References -- 5.Machine Learning for Hybrid Detection -- 5.1.Hybrid Detection -- 5.2.Machine Learning in Hybrid Intrusion Detection Systems -- 5.3.Machine-Learning Applications in Hybrid Intrusion Detection -- 5.3.1.Anomaly-Misuse Sequence Detection System -- 5.3.2.Association Rules in Audit Data Analysis and Mining (Table 1.4, D.4) -- 5.3.3.Misuse-Anomaly Sequence Detection System -- 5.3.4.Parallel Detection System -- 5.3.5.Complex Mixture Detection System -- 5.3.6.Other Hybrid Intrusion Systems -- 5.4.Summary -- References -- 6.Machine Learning for Scan Detection -- 6.1.Scan and Scan Detection -- 6.2.Machine Learning in Scan Detection -- 6.3.Machine-Learning Applications in Scan Detection -- 6.4.Other Scan Techniques with Machine-Learning Methods -- 6.5.Summary -- References -- 7.Machine Learning for Profiling Network Traffic -- 7.1.Introduction -- 7.2.Network Traffic Profiling and Related Network Traffic Knowledge -- 7.3.Machine Learning and Network Traffic Profiling -- 7.4.Data-Mining and Machine-Learning Applications in Network Profiling -- 7.4.1.Other Profiling Methods and Applications -- 7.5.Summary -- References -- 8.Privacy-Preserving Data Mining -- 8.1.Privacy Preservation Techniques in PPDM -- 8.1.1.Notations -- 8.1.2.Privacy Preservation in Data Mining -- 8.2.Workflow of PPDM -- 8.2.1.Introduction of the PPDM Workflow -- 8.2.2.PPDM Algorithms -- 8.2.3.Performance Evaluation of PPDM Algorithms -- 8.3.Data-Mining and Machine-Learning Applications in PPDM -- 8.3.1.Privacy Preservation Association Rules (Table 1.1, A.4) -- 8.3.2.Privacy Preservation Decision Tree (Table 1.1, A.6) -- 8.3.3.Privacy Preservation Bayesian Network (Table 1.1, A.2) -- 8.3.4.Privacy Preservation KNN (Table 1.1, A.7) -- 8.3.5.Privacy Preservation k-Means Clustering (Table 1.1, A.3) -- 8.3.6.Other PPDM Methods -- 8.4.Summary -- References -- 9.Emerging Challenges in Cybersecurity -- 9.1.Emerging Cyber Threats -- 9.1.1.Threats from Malware -- 9.1.2.Threats from Botnets -- 9.1.3.Threats from Cyber Warfare -- 9.1.4.Threats from Mobile Communication -- 9.1.5.Cyber Crimes -- 9.2.Network Monitoring, Profiling, and Privacy Preservation -- 9.2.1.Privacy Preservation of Original Data -- 9.2.2.Privacy Preservation in the Network Traffic Monitoring and Profiling Algorithms -- 9.2.3.Privacy Preservation of Monitoring and Profiling Data -- 9.2.4.Regulation, Laws, and Privacy Preservation -- 9.2.5.Privacy Preservation, Network Monitoring, and Profiling Example: PRISM -- 9.3.Emerging Challenges in Intrusion Detection -- 9.3.1.Unifying the Current Anomaly Detection Systems -- 9.3.2.Network Traffic Anomaly Detection -- 9.3.3.Imbalanced Learning Problem and Advanced Evaluation Metrics for IDS -- 9.3.4.Reliable Evaluation Data Sets or Data Generation Tools -- 9.3.5.Privacy Issues in Network Anomaly Detection -- 9.4.Summary -- References.
650
0
$a
Data mining.
$3
184440
650
0
$a
Machine learning.
$3
188639
650
0
$a
Computer security.
$3
184416
700
1
$a
Du, Xian,
$c
Ph.D.
$3
697176
856
4 0
$u
http://www.crcnetbase.com/doi/book/10.1201/b10867
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000105223
電子館藏
1圖書
電子書
EB QA76.9.D343 D825 c2011
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
http://www.crcnetbase.com/doi/book/10.1201/b10867
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login