Extremes in random fieldsa theory an...
Yakir, Benjamin.

 

  • Extremes in random fieldsa theory and its applications /
  • Record Type: Language materials, printed : Monograph/item
    Title/Author: Extremes in random fieldsBenjamin Yakir.
    Reminder of title: a theory and its applications /
    Author: Yakir, Benjamin.
    Published: Chichester, West Sussex, United Kingdom :Wiley,2013.
    Description: 1 online resource (xv, 236 p.) :ill.
    Notes: Edition statement from running title area.
    Notes: Machine generated contents note: Preface I Theory 1 Introduction 1.1 Distribution of extremes in random fields 1.2 Outline of the method 1.3 Gaussian and asymptotically Gaussian random fields 1.4 Applications 2 Basic Examples 2.1 Introduction 2.2 A power-one sequential test 2.3 A kernel-based scanning statistic 2.4 Other methods 3 Approximation of the Local Rate 3.1 Introduction 3.2 Preliminary localization and approximation 3.2.1 Localization 3.2.2 A discrete approximation 3.3 Measure transformation 3.4 Application of the localization theorem 3.5 Integration 4 From the Local to the Global 4.1 Introduction 4.2 Poisson approximation of probabilities 4.3 Average run length to false alarm 5 The Localization Theorem 5.1 Introduction 5.2 A simplifies version of the localization theorem 5.3 The Localization Theorem 5.4 A local limit theorem 5.5 Edge effects II Applications 6 Kolmogorov-Smirnov and Peacock 6.1 Introduction 6.2 Analysis of the one-dimensional case 6.3 Peacock's test 6.4 Relations to scanning statistics 7 Copy Number Variations 7.1 Introduction 7.2 The statistical model 7.3 Analysis of statistical properties 7.4 The False Discovery Rate (FDR) 8 Sequential Monitoring of an Image 8.1 Introduction 8.2 The statistical model 8.3 Analysis of statistical properties 8.4 Optimal change-point detection 9 Buffer Overflow 9.1 Introduction 9.2 The statistical model 9.3 Analysis of statistical properties 9.4 Long-range dependence and self-similarity 10 Computing Pickands' Constants 10.1 Introduction 10.2 Representations of constants 10.3 Analysis of statistical error 10.4 Local fluctuations Appendix A Mathematical Background A.1 Transforms A.2 Approximations of sum of independent random elements A.3 Concentration inequalities A.4 Random walks A.5 Renewal theory A.6 The Gaussian distribution A.7 Large sample inference A.8 Integration A.9 Poisson approximation A.10 Convexity References Index.
    Subject: Random fields.
    Online resource: http://onlinelibrary.wiley.com/book/10.1002/9781118720608
    ISBN: 9781118720615 (electronic bk.)
Items
  • 1 records • Pages 1 •
  • 1 records • Pages 1 •
Reviews
Export
pickup library
 
 
Change password
Login