語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Design of experiments for reinforcem...
~
Gatti, Christopher.
Design of experiments for reinforcement learning
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Design of experiments for reinforcement learningby Christopher Gatti.
作者:
Gatti, Christopher.
出版者:
Cham :Springer International Publishing :2015.
面頁冊數:
xiii, 191 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Reinforcement learning.
電子資源:
http://dx.doi.org/10.1007/978-3-319-12197-0
ISBN:
9783319121970 (electronic bk.)
Design of experiments for reinforcement learning
Gatti, Christopher.
Design of experiments for reinforcement learning
[electronic resource] /by Christopher Gatti. - Cham :Springer International Publishing :2015. - xiii, 191 p. :ill., digital ;24 cm. - Springer theses,2190-5053. - Springer theses..
Introduction -- Reinforcement Learning. Design of Experiments -- Methodology -- The Mountain Car Problem -- The Truck Backer-Upper Problem -- The Tandem Truck Backer-Upper Problem -- Appendices.
This thesis takes an empirical approach to understanding of the behavior and interactions between the two main components of reinforcement learning: the learning algorithm and the functional representation of learned knowledge. The author approaches these entities using design of experiments not commonly employed to study machine learning methods. The results outlined in this work provide insight as to what enables and what has an effect on successful reinforcement learning implementations so that this learning method can be applied to more challenging problems.
ISBN: 9783319121970 (electronic bk.)
Standard No.: 10.1007/978-3-319-12197-0doiSubjects--Topical Terms:
349131
Reinforcement learning.
LC Class. No.: Q325.6 / .G388 2015
Dewey Class. No.: 006.31
Design of experiments for reinforcement learning
LDR
:01732nmm a2200325 a 4500
001
460577
003
DE-He213
005
20150714145915.0
006
m d
007
cr nn 008maaau
008
151110s2015 gw s 0 eng d
020
$a
9783319121970 (electronic bk.)
020
$a
9783319121963 (paper)
024
7
$a
10.1007/978-3-319-12197-0
$2
doi
035
$a
978-3-319-12197-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.6
$b
.G388 2015
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
006.31
$2
23
090
$a
Q325.6
$b
.G263 2015
100
1
$a
Gatti, Christopher.
$3
712098
245
1 0
$a
Design of experiments for reinforcement learning
$h
[electronic resource] /
$c
by Christopher Gatti.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
xiii, 191 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer theses,
$x
2190-5053
505
0
$a
Introduction -- Reinforcement Learning. Design of Experiments -- Methodology -- The Mountain Car Problem -- The Truck Backer-Upper Problem -- The Tandem Truck Backer-Upper Problem -- Appendices.
520
$a
This thesis takes an empirical approach to understanding of the behavior and interactions between the two main components of reinforcement learning: the learning algorithm and the functional representation of learned knowledge. The author approaches these entities using design of experiments not commonly employed to study machine learning methods. The results outlined in this work provide insight as to what enables and what has an effect on successful reinforcement learning implementations so that this learning method can be applied to more challenging problems.
650
0
$a
Reinforcement learning.
$3
349131
650
0
$a
Artificial intelligence.
$3
194058
650
1 4
$a
Engineering.
$3
210888
650
2 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Logic Design.
$3
276275
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
252959
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Springer theses.
$3
557607
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-12197-0
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000110084
電子館藏
1圖書
電子書
EB Q325.6 G263 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-12197-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入