Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Numerical methods for nonlinear part...
~
Bartels, Soren.
Numerical methods for nonlinear partial differential equations
Record Type:
Electronic resources : Monograph/item
Title/Author:
Numerical methods for nonlinear partial differential equationsby Soren Bartels.
Author:
Bartels, Soren.
Published:
Cham :Springer International Publishing :2015.
Description:
x, 393 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Numerical Analysis.
Online resource:
http://dx.doi.org/10.1007/978-3-319-13797-1
ISBN:
9783319137971 (electronic bk.)
Numerical methods for nonlinear partial differential equations
Bartels, Soren.
Numerical methods for nonlinear partial differential equations
[electronic resource] /by Soren Bartels. - Cham :Springer International Publishing :2015. - x, 393 p. :ill., digital ;24 cm. - Springer series in computational mathematics,v.470179-3632 ;. - Springer series in computational mathematics ;42..
1. Introduction -- Part I: Analytical and Numerical Foundations -- 2. Analytical Background -- 3. FEM for Linear Problems -- 4. Concepts for Discretized Problems -- Part II: Approximation of Classical Formulations -- 5. The Obstacle Problem -- 6. The Allen-Cahn Equation -- 7. Harmonic Maps -- 8. Bending Problems -- Part III: Methods for Extended Formulations -- 9. Nonconvexity and Microstructure -- 10. Free Discontinuities -- 11. Elastoplasticity -- Auxiliary Routines -- Frequently Used Notation -- Index.
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.
ISBN: 9783319137971 (electronic bk.)
Standard No.: 10.1007/978-3-319-13797-1doiSubjects--Topical Terms:
275681
Numerical Analysis.
LC Class. No.: QA377
Dewey Class. No.: 515.353
Numerical methods for nonlinear partial differential equations
LDR
:02414nmm a2200337 a 4500
001
461578
003
DE-He213
005
20150903133057.0
006
m d
007
cr nn 008maaau
008
151110s2015 gw s 0 eng d
020
$a
9783319137971 (electronic bk.)
020
$a
9783319137964 (paper)
024
7
$a
10.1007/978-3-319-13797-1
$2
doi
035
$a
978-3-319-13797-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA377
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT021000
$2
bisacsh
072
7
$a
MAT006000
$2
bisacsh
082
0 4
$a
515.353
$2
23
090
$a
QA377
$b
.B283 2015
100
1
$a
Bartels, Soren.
$3
713762
245
1 0
$a
Numerical methods for nonlinear partial differential equations
$h
[electronic resource] /
$c
by Soren Bartels.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
x, 393 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer series in computational mathematics,
$x
0179-3632 ;
$v
v.47
505
0
$a
1. Introduction -- Part I: Analytical and Numerical Foundations -- 2. Analytical Background -- 3. FEM for Linear Problems -- 4. Concepts for Discretized Problems -- Part II: Approximation of Classical Formulations -- 5. The Obstacle Problem -- 6. The Allen-Cahn Equation -- 7. Harmonic Maps -- 8. Bending Problems -- Part III: Methods for Extended Formulations -- 9. Nonconvexity and Microstructure -- 10. Free Discontinuities -- 11. Elastoplasticity -- Auxiliary Routines -- Frequently Used Notation -- Index.
520
$a
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.
650
2 4
$a
Numerical Analysis.
$3
275681
650
2 4
$a
Partial Differential Equations.
$3
274075
650
2 4
$a
Algorithms.
$3
184661
650
2 4
$a
Calculus of Variations and Optimal Control; Optimization.
$3
274198
650
0
$a
Differential equations, Partial
$x
Numerical solutions.
$3
185034
650
0
$a
Differential equations, Nonlinear.
$3
185178
650
0
$a
Numerical analysis.
$3
182073
650
1 4
$a
Mathematics.
$3
184409
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Springer series in computational mathematics ;
$v
42.
$3
560664
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-13797-1
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000111085
電子館藏
1圖書
電子書
EB QA377 B283 2015
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
http://dx.doi.org/10.1007/978-3-319-13797-1
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login