Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Heat transfer modelingan inductive a...
~
Sidebotham, George.
Heat transfer modelingan inductive approach /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Heat transfer modelingby George Sidebotham.
Reminder of title:
an inductive approach /
Author:
Sidebotham, George.
Published:
Cham :Springer International Publishing :2015.
Description:
xviii, 516 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
Subject:
HeatTransmission
Online resource:
http://dx.doi.org/10.1007/978-3-319-14514-3
ISBN:
9783319145143 (electronic bk.)
Heat transfer modelingan inductive approach /
Sidebotham, George.
Heat transfer modeling
an inductive approach /[electronic resource] :by George Sidebotham. - Cham :Springer International Publishing :2015. - xviii, 516 p. :ill. (some col.), digital ;24 cm.
Part I Modes of Heat Transfer -- Thermal Circuits -- Lumped Capacity Systems and Overall Heat Transfer Coefficients -- Part II Transient Conduction (with Convective/Radiative -- Boundary Conditions).- Part III Steady-State Conduction (with Convective/Radiative -- Boundary Conditions) -- Part IV Heat Exchangers -- Internal Flow Models -- Heat Exchangers.
This innovative text emphasizes a "less-is-more" approach to modeling complicated systems such as heat transfer by treating them first as "1-node lumped models" that yield simple closed-form solutions. The author develops numerical techniques for students to obtain more detail, but also trains them to use the techniques only when simpler approaches fail. Covering all essential methods offered in traditional texts, but with a different order, Professor Sidebotham stresses inductive thinking and problem solving as well as a constructive understanding of modern, computer-based practice. Readers learn to develop their own code in the context of the material, rather than just how to use packaged software, offering a deeper, intrinsic grasp behind models of heat transfer. Developed from over twenty-five years of lecture notes to teach students of mechanical and chemical engineering at The Cooper Union for the Advancement of Science and Art, the book is ideal for students and practitioners across engineering disciplines seeking a solid understanding of heat transfer. This book also: Adopts a novel inductive pedagogy where commonly understood examples are introduced early and theory is developed to explain and predict readily recognized phenomena Introduces new techniques as needed to address specific problems, in contrast to traditional texts' use of a deductive approach, where abstract general principles lead to specific examples Elucidates readers' understanding of the "heat transfer takes time" idea—transient analysis applications are introduced first and steady-state methods are shown to be a limiting case of those applications Focuses on basic numerical methods rather than analytical methods of solving partial differential equations, largely obsolete in light of modern computer power Maximizes readers' insights to heat transfer modeling by framing theory as an engineering design tool, not as a pure science, as has been done in traditional textbooks Integrates practical use of spreadsheets for calculations and provides many tips for their use throughout the text examples
ISBN: 9783319145143 (electronic bk.)
Standard No.: 10.1007/978-3-319-14514-3doiSubjects--Topical Terms:
190363
Heat
--Transmission
LC Class. No.: TJ260
Dewey Class. No.: 621.4022
Heat transfer modelingan inductive approach /
LDR
:03389nmm a2200313 a 4500
001
461828
003
DE-He213
005
20150918104124.0
006
m d
007
cr nn 008maaau
008
151110s2015 gw s 0 eng d
020
$a
9783319145143 (electronic bk.)
020
$a
9783319145136 (paper)
024
7
$a
10.1007/978-3-319-14514-3
$2
doi
035
$a
978-3-319-14514-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TJ260
072
7
$a
TGMB
$2
bicssc
072
7
$a
SCI065000
$2
bisacsh
082
0 4
$a
621.4022
$2
23
090
$a
TJ260
$b
.S568 2015
100
1
$a
Sidebotham, George.
$3
714211
245
1 0
$a
Heat transfer modeling
$h
[electronic resource] :
$b
an inductive approach /
$c
by George Sidebotham.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
xviii, 516 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Part I Modes of Heat Transfer -- Thermal Circuits -- Lumped Capacity Systems and Overall Heat Transfer Coefficients -- Part II Transient Conduction (with Convective/Radiative -- Boundary Conditions).- Part III Steady-State Conduction (with Convective/Radiative -- Boundary Conditions) -- Part IV Heat Exchangers -- Internal Flow Models -- Heat Exchangers.
520
$a
This innovative text emphasizes a "less-is-more" approach to modeling complicated systems such as heat transfer by treating them first as "1-node lumped models" that yield simple closed-form solutions. The author develops numerical techniques for students to obtain more detail, but also trains them to use the techniques only when simpler approaches fail. Covering all essential methods offered in traditional texts, but with a different order, Professor Sidebotham stresses inductive thinking and problem solving as well as a constructive understanding of modern, computer-based practice. Readers learn to develop their own code in the context of the material, rather than just how to use packaged software, offering a deeper, intrinsic grasp behind models of heat transfer. Developed from over twenty-five years of lecture notes to teach students of mechanical and chemical engineering at The Cooper Union for the Advancement of Science and Art, the book is ideal for students and practitioners across engineering disciplines seeking a solid understanding of heat transfer. This book also: Adopts a novel inductive pedagogy where commonly understood examples are introduced early and theory is developed to explain and predict readily recognized phenomena Introduces new techniques as needed to address specific problems, in contrast to traditional texts' use of a deductive approach, where abstract general principles lead to specific examples Elucidates readers' understanding of the "heat transfer takes time" idea—transient analysis applications are introduced first and steady-state methods are shown to be a limiting case of those applications Focuses on basic numerical methods rather than analytical methods of solving partial differential equations, largely obsolete in light of modern computer power Maximizes readers' insights to heat transfer modeling by framing theory as an engineering design tool, not as a pure science, as has been done in traditional textbooks Integrates practical use of spreadsheets for calculations and provides many tips for their use throughout the text examples
650
0
$a
Heat
$x
Transmission
$x
Mathematical models.
$3
190363
650
1 4
$a
Engineering.
$3
210888
650
2 4
$a
Engineering Thermodynamics, Heat and Mass Transfer.
$3
338996
650
2 4
$a
Engineering Fluid Dynamics.
$3
273893
650
2 4
$a
Simulation and Modeling.
$3
273719
650
2 4
$a
Industrial Chemistry/Chemical Engineering.
$3
273974
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-14514-3
950
$a
Engineering (Springer-11647)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000111335
電子館藏
1圖書
電子書
EB TJ260 S568 2015
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
http://dx.doi.org/10.1007/978-3-319-14514-3
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login