Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Primer to analysis of genomic Data u...
~
Gondro, Cedric.
Primer to analysis of genomic Data using R
Record Type:
Electronic resources : Monograph/item
Title/Author:
Primer to analysis of genomic Data using Rby Cedric Gondro.
Author:
Gondro, Cedric.
Published:
Cham :Springer International Publishing :2015.
Description:
xvi, 270 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
Subject:
GenomicsStatistical methods.
Online resource:
http://dx.doi.org/10.1007/978-3-319-14475-7
ISBN:
9783319144757 (electronic bk.)
Primer to analysis of genomic Data using R
Gondro, Cedric.
Primer to analysis of genomic Data using R
[electronic resource] /by Cedric Gondro. - Cham :Springer International Publishing :2015. - xvi, 270 p. :ill. (some col.), digital ;24 cm. - Use R!,2197-5736. - Use R!.
R basics -- Simple marker association tests -- Genome wide association studies -- Population and genetic architecture -- Gene expression analysis -- Databases and functional information -- Extending R -- Final comments -- Index -- References.
Through this book, researchers and students will learn to use R for analysis of large-scale genomic data and how to create routines to automate analytical steps. The philosophy behind the book is to start with real world raw datasets and perform all the analytical steps needed to reach final results. Though theory plays an important role, this is a practical book for advanced undergraduate and graduate classes in bioinformatics, genomics and statistical genetics or for use in lab sessions. This book is also designed to be used by students in computer science and statistics who want to learn the practical aspects of genomic analysis without delving into algorithmic details. The datasets used throughout the book may be downloaded from the publisher's website. Chapters show how to handle and manage high-throughput genomic data, create automated workflows and speed up analyses in R. A wide range of R packages useful for working with genomic data are illustrated with practical examples. In recent years R has become the de facto tool for analysis of gene expression data, in addition to its prominent role in the analysis of genomic data. Benefits to using R include the integrated development environment for analysis, flexibility and control of the analytic workflow. At a time when genomic data is decidedly big, the skills from this book are critical. The key topics covered are association studies, genomic prediction, estimation of population genetic parameters and diversity, gene expression analysis, functional annotation of results using publically available databases and how to work efficiently in R with large genomic datasets. Important principles are demonstrated and illustrated through engaging examples which invite the reader to work with the provided datasets. Some methods that are discussed in this volume include: signatures of selection; population parameters (LD, FST, FIS, etc); use of a genomic relationship matrix for population diversity studies; use of SNP data for parentage testing; snpBLUP and gBLUP for genomic prediction. Step-by-step, all the R code required for a genome-wide association study is shown: starting from raw SNP data, how to build databases to handle and manage the data, quality control and filtering measures, association testing and evaluation of results, through to identification and functional annotation of candidate genes. Similarly, gene expression analyses are shown using microarray and RNAseq data.
ISBN: 9783319144757 (electronic bk.)
Standard No.: 10.1007/978-3-319-14475-7doiSubjects--Topical Terms:
273450
Genomics
--Statistical methods.
LC Class. No.: QH438.4.S73
Dewey Class. No.: 576.50727
Primer to analysis of genomic Data using R
LDR
:03719nmm a2200337 a 4500
001
469178
003
DE-He213
005
20160105110824.0
006
m d
007
cr nn 008maaau
008
160118s2015 gw s 0 eng d
020
$a
9783319144757 (electronic bk.)
020
$a
9783319144740 (paper)
024
7
$a
10.1007/978-3-319-14475-7
$2
doi
035
$a
978-3-319-14475-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QH438.4.S73
072
7
$a
PBT
$2
bicssc
072
7
$a
MBNS
$2
bicssc
072
7
$a
MED090000
$2
bisacsh
082
0 4
$a
576.50727
$2
23
090
$a
QH438.4.S73
$b
G637 2015
100
1
$a
Gondro, Cedric.
$3
725078
245
1 0
$a
Primer to analysis of genomic Data using R
$h
[electronic resource] /
$c
by Cedric Gondro.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
xvi, 270 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Use R!,
$x
2197-5736
505
0
$a
R basics -- Simple marker association tests -- Genome wide association studies -- Population and genetic architecture -- Gene expression analysis -- Databases and functional information -- Extending R -- Final comments -- Index -- References.
520
$a
Through this book, researchers and students will learn to use R for analysis of large-scale genomic data and how to create routines to automate analytical steps. The philosophy behind the book is to start with real world raw datasets and perform all the analytical steps needed to reach final results. Though theory plays an important role, this is a practical book for advanced undergraduate and graduate classes in bioinformatics, genomics and statistical genetics or for use in lab sessions. This book is also designed to be used by students in computer science and statistics who want to learn the practical aspects of genomic analysis without delving into algorithmic details. The datasets used throughout the book may be downloaded from the publisher's website. Chapters show how to handle and manage high-throughput genomic data, create automated workflows and speed up analyses in R. A wide range of R packages useful for working with genomic data are illustrated with practical examples. In recent years R has become the de facto tool for analysis of gene expression data, in addition to its prominent role in the analysis of genomic data. Benefits to using R include the integrated development environment for analysis, flexibility and control of the analytic workflow. At a time when genomic data is decidedly big, the skills from this book are critical. The key topics covered are association studies, genomic prediction, estimation of population genetic parameters and diversity, gene expression analysis, functional annotation of results using publically available databases and how to work efficiently in R with large genomic datasets. Important principles are demonstrated and illustrated through engaging examples which invite the reader to work with the provided datasets. Some methods that are discussed in this volume include: signatures of selection; population parameters (LD, FST, FIS, etc); use of a genomic relationship matrix for population diversity studies; use of SNP data for parentage testing; snpBLUP and gBLUP for genomic prediction. Step-by-step, all the R code required for a genome-wide association study is shown: starting from raw SNP data, how to build databases to handle and manage the data, quality control and filtering measures, association testing and evaluation of results, through to identification and functional annotation of candidate genes. Similarly, gene expression analyses are shown using microarray and RNAseq data.
650
0
$a
Genomics
$x
Statistical methods.
$3
273450
650
0
$a
R (Computer program language)
$3
210846
650
1 4
$a
Statistics.
$3
182057
650
2 4
$a
Statistics for Life Sciences, Medicine, Health Sciences.
$3
274067
650
2 4
$a
Statistics and Computing/Statistics Programs.
$3
275710
650
2 4
$a
Gene Expression.
$3
220379
650
2 4
$a
Microarrays.
$3
342827
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Use R!
$3
558822
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-14475-7
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000117608
電子館藏
1圖書
電子書
EB QH438.4.S73 G637 2015
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
http://dx.doi.org/10.1007/978-3-319-14475-7
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login