Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Mathematics of aperiodic order
~
Kellendonk, Johannes.
Mathematics of aperiodic order
Record Type:
Electronic resources : Monograph/item
Title/Author:
Mathematics of aperiodic orderedited by Johannes Kellendonk, Daniel Lenz, Jean Savinien.
other author:
Kellendonk, Johannes.
Published:
Basel :Springer Basel :2015.
Description:
xii, 428 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Aperiodic tilings.
Online resource:
http://dx.doi.org/10.1007/978-3-0348-0903-0
ISBN:
9783034809030 (electronic bk.)
Mathematics of aperiodic order
Mathematics of aperiodic order
[electronic resource] /edited by Johannes Kellendonk, Daniel Lenz, Jean Savinien. - Basel :Springer Basel :2015. - xii, 428 p. :ill., digital ;24 cm. - Progress in mathematics,v.3090743-1643 ;. - Progress in mathematics ;v.295..
Preface -- 1.M. Baake, M. Birkner and U. Grimm: Non-Periodic Systems with Continuous Diffraction Measures -- 2.S. Akiyama, M. Barge, V. Berthe, J.-Y. Lee and A. Siegel: On the Pisot Substitution Conjecture -- 3. L. Sadun: Cohomology of Hierarchical Tilings -- 4.J. Hunton: Spaces of Projection Method Patterns and their Cohomology -- 5.J.-B. Aujogue, M. Barge, J. Kellendonk, D. Lenz: Equicontinuous Factors, Proximality and Ellis Semigroup for Delone Sets -- 6.J. Aliste-Prieto, D. Coronel, M.I. Cortez, F. Durand and S. Petite: Linearly Repetitive Delone Sets -- 7.N. Priebe Frank: Tilings with Infinite Local Complexity -- 8. A.Julien, J. Kellendonk and J. Savinien: On the Noncommutative Geometry of Tilings -- 9.D. Damanik, M. Embree and A. Gorodetski: Spectral Properties of Schrodinger Operators Arising in the Study of Quasicrystals -- 10.S. Puzynina and L.Q. Zamboni: Additive Properties of Sets and Substitutive Dynamics -- 11.J.V. Bellissard: Delone Sets and Material Science: a Program.
What is order that is not based on simple repetition, that is, periodicity? How must atoms be arranged in a material so that it diffracts like a quasicrystal? How can we describe aperiodically ordered systems mathematically? Originally triggered by the - later Nobel prize-winning - discovery of quasicrystals, the investigation of aperiodic order has since become a well-established and rapidly evolving field of mathematical research with close ties to a surprising variety of branches of mathematics and physics. This book offers an overview of the state of the art in the field of aperiodic order, presented in carefully selected authoritative surveys. It is intended for non-experts with a general background in mathematics, theoretical physics or computer science, and offers a highly accessible source of first-hand information for all those interested in this rich and exciting field. Topics covered include the mathematical theory of diffraction, the dynamical systems of tilings or Delone sets, their cohomology and non-commutative geometry, the Pisot substitution conjecture, aperiodic Schrodinger operators, and connections to arithmetic number theory.
ISBN: 9783034809030 (electronic bk.)
Standard No.: 10.1007/978-3-0348-0903-0doiSubjects--Topical Terms:
726876
Aperiodic tilings.
LC Class. No.: QA640.72
Dewey Class. No.: 516.11
Mathematics of aperiodic order
LDR
:03239nmm a2200349 a 4500
001
471550
003
DE-He213
005
20160122091732.0
006
m d
007
cr nn 008maaau
008
160223s2015 sz s 0 eng d
020
$a
9783034809030 (electronic bk.)
020
$a
9783034809023 (paper)
024
7
$a
10.1007/978-3-0348-0903-0
$2
doi
035
$a
978-3-0348-0903-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA640.72
072
7
$a
PBMW
$2
bicssc
072
7
$a
PBD
$2
bicssc
072
7
$a
MAT012020
$2
bisacsh
072
7
$a
MAT008000
$2
bisacsh
082
0 4
$a
516.11
$2
23
090
$a
QA640.72
$b
.M426 2015
245
0 0
$a
Mathematics of aperiodic order
$h
[electronic resource] /
$c
edited by Johannes Kellendonk, Daniel Lenz, Jean Savinien.
260
$a
Basel :
$b
Springer Basel :
$b
Imprint: Birkhauser,
$c
2015.
300
$a
xii, 428 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Progress in mathematics,
$x
0743-1643 ;
$v
v.309
505
0
$a
Preface -- 1.M. Baake, M. Birkner and U. Grimm: Non-Periodic Systems with Continuous Diffraction Measures -- 2.S. Akiyama, M. Barge, V. Berthe, J.-Y. Lee and A. Siegel: On the Pisot Substitution Conjecture -- 3. L. Sadun: Cohomology of Hierarchical Tilings -- 4.J. Hunton: Spaces of Projection Method Patterns and their Cohomology -- 5.J.-B. Aujogue, M. Barge, J. Kellendonk, D. Lenz: Equicontinuous Factors, Proximality and Ellis Semigroup for Delone Sets -- 6.J. Aliste-Prieto, D. Coronel, M.I. Cortez, F. Durand and S. Petite: Linearly Repetitive Delone Sets -- 7.N. Priebe Frank: Tilings with Infinite Local Complexity -- 8. A.Julien, J. Kellendonk and J. Savinien: On the Noncommutative Geometry of Tilings -- 9.D. Damanik, M. Embree and A. Gorodetski: Spectral Properties of Schrodinger Operators Arising in the Study of Quasicrystals -- 10.S. Puzynina and L.Q. Zamboni: Additive Properties of Sets and Substitutive Dynamics -- 11.J.V. Bellissard: Delone Sets and Material Science: a Program.
520
$a
What is order that is not based on simple repetition, that is, periodicity? How must atoms be arranged in a material so that it diffracts like a quasicrystal? How can we describe aperiodically ordered systems mathematically? Originally triggered by the - later Nobel prize-winning - discovery of quasicrystals, the investigation of aperiodic order has since become a well-established and rapidly evolving field of mathematical research with close ties to a surprising variety of branches of mathematics and physics. This book offers an overview of the state of the art in the field of aperiodic order, presented in carefully selected authoritative surveys. It is intended for non-experts with a general background in mathematics, theoretical physics or computer science, and offers a highly accessible source of first-hand information for all those interested in this rich and exciting field. Topics covered include the mathematical theory of diffraction, the dynamical systems of tilings or Delone sets, their cohomology and non-commutative geometry, the Pisot substitution conjecture, aperiodic Schrodinger operators, and connections to arithmetic number theory.
650
0
$a
Aperiodic tilings.
$3
726876
650
0
$a
Aperiodicity.
$3
272982
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Convex and Discrete Geometry.
$3
277230
650
2 4
$a
Dynamical Systems and Ergodic Theory.
$3
273794
650
2 4
$a
Operator Theory.
$3
274795
650
2 4
$a
Number Theory.
$3
274059
650
2 4
$a
Global Analysis and Analysis on Manifolds.
$3
273786
700
1
$a
Kellendonk, Johannes.
$3
726874
700
1
$a
Lenz, Daniel.
$3
515958
700
1
$a
Savinien, Jean.
$3
726875
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Progress in mathematics ;
$v
v.295.
$3
558269
856
4 0
$u
http://dx.doi.org/10.1007/978-3-0348-0903-0
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000118195
電子館藏
1圖書
電子書
EB QA640.72 M426 2015
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
http://dx.doi.org/10.1007/978-3-0348-0903-0
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login