Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
An introduction to dynamical systems...
~
Layek, G.C.
An introduction to dynamical systems and chaos
Record Type:
Electronic resources : Monograph/item
Title/Author:
An introduction to dynamical systems and chaosby G.C. Layek.
Author:
Layek, G.C.
Published:
New Delhi :Springer India :2015.
Description:
xviii, 622 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Mathematics.
Online resource:
http://dx.doi.org/10.1007/978-81-322-2556-0
ISBN:
9788132225560$q(electronic bk.)
An introduction to dynamical systems and chaos
Layek, G.C.
An introduction to dynamical systems and chaos
[electronic resource] /by G.C. Layek. - New Delhi :Springer India :2015. - xviii, 622 p. :ill., digital ;24 cm.
Continuous Dynamical Systems -- Linear Systems -- Phase Plane Analysis -- Stability Theory -- Oscillations -- Theory of Bifurcations -- Hamiltonian Systems -- Symmetry Analysis -- Discrete Dynamical Systems -- Some Maps -- Conjugacy of Maps -- Chaos -- Fractals.
The book discusses continuous and discrete systems in systematic and sequential approaches for all aspects of nonlinear dynamics. The unique feature of the book is its mathematical theories on flow bifurcations, oscillatory solutions, symmetry analysis of nonlinear systems and chaos theory. The logically structured content and sequential orientation provide readers with a global overview of the topic. A systematic mathematical approach has been adopted, and a number of examples worked out in detail and exercises have been included. Chapters 1-8 are devoted to continuous systems, beginning with one-dimensional flows. Symmetry is an inherent character of nonlinear systems, and the Lie invariance principle and its algorithm for finding symmetries of a system are discussed in Chap. 8. Chapters 9-13 focus on discrete systems, chaos and fractals. Conjugacy relationship among maps and its properties are described with proofs. Chaos theory and its connection with fractals, Hamiltonian flows and symmetries of nonlinear systems are among the main focuses of this book. Over the past few decades, there has been an unprecedented interest and advances in nonlinear systems, chaos theory and fractals, which is reflected in undergraduate and postgraduate curricula around the world. The book is useful for courses in dynamical systems and chaos, nonlinear dynamics, etc., for advanced undergraduate and postgraduate students in mathematics, physics and engineering.
ISBN: 9788132225560$q(electronic bk.)
Standard No.: 10.1007/978-81-322-2556-0doiSubjects--Topical Terms:
184409
Mathematics.
LC Class. No.: QA313
Dewey Class. No.: 515.39
An introduction to dynamical systems and chaos
LDR
:02657nmm a2200313 a 4500
001
476995
003
DE-He213
005
20160418150820.0
006
m d
007
cr nn 008maaau
008
160526s2015 ii s 0 eng d
020
$a
9788132225560$q(electronic bk.)
020
$a
9788132225553$q(paper)
024
7
$a
10.1007/978-81-322-2556-0
$2
doi
035
$a
978-81-322-2556-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA313
072
7
$a
PBWR
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
082
0 4
$a
515.39
$2
23
090
$a
QA313
$b
.L427 2015
100
1
$a
Layek, G.C.
$3
731810
245
1 3
$a
An introduction to dynamical systems and chaos
$h
[electronic resource] /
$c
by G.C. Layek.
260
$a
New Delhi :
$b
Springer India :
$b
Imprint: Springer,
$c
2015.
300
$a
xviii, 622 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Continuous Dynamical Systems -- Linear Systems -- Phase Plane Analysis -- Stability Theory -- Oscillations -- Theory of Bifurcations -- Hamiltonian Systems -- Symmetry Analysis -- Discrete Dynamical Systems -- Some Maps -- Conjugacy of Maps -- Chaos -- Fractals.
520
$a
The book discusses continuous and discrete systems in systematic and sequential approaches for all aspects of nonlinear dynamics. The unique feature of the book is its mathematical theories on flow bifurcations, oscillatory solutions, symmetry analysis of nonlinear systems and chaos theory. The logically structured content and sequential orientation provide readers with a global overview of the topic. A systematic mathematical approach has been adopted, and a number of examples worked out in detail and exercises have been included. Chapters 1-8 are devoted to continuous systems, beginning with one-dimensional flows. Symmetry is an inherent character of nonlinear systems, and the Lie invariance principle and its algorithm for finding symmetries of a system are discussed in Chap. 8. Chapters 9-13 focus on discrete systems, chaos and fractals. Conjugacy relationship among maps and its properties are described with proofs. Chaos theory and its connection with fractals, Hamiltonian flows and symmetries of nonlinear systems are among the main focuses of this book. Over the past few decades, there has been an unprecedented interest and advances in nonlinear systems, chaos theory and fractals, which is reflected in undergraduate and postgraduate curricula around the world. The book is useful for courses in dynamical systems and chaos, nonlinear dynamics, etc., for advanced undergraduate and postgraduate students in mathematics, physics and engineering.
650
0
$a
Mathematics.
$3
184409
650
0
$a
Dynamics.
$3
189568
650
0
$a
Ergodic theory.
$3
219112
650
2 4
$a
Dynamical Systems and Ergodic Theory.
$3
273794
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-81-322-2556-0
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000120214
電子館藏
1圖書
電子書
EB QA313 L427 2015
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
http://dx.doi.org/10.1007/978-81-322-2556-0
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login