Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
p-Laplace equation in the Heisenberg...
~
Ricciotti, Diego.
p-Laplace equation in the Heisenberg groupregularity of solutions /
Record Type:
Electronic resources : Monograph/item
Title/Author:
p-Laplace equation in the Heisenberg groupby Diego Ricciotti.
Reminder of title:
regularity of solutions /
Author:
Ricciotti, Diego.
Published:
Cham :Springer International Publishing :2015.
Description:
xiv, 87 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Laplacian operator.
Online resource:
http://dx.doi.org/10.1007/978-3-319-23790-9
ISBN:
9783319237909$q(electronic bk.)
p-Laplace equation in the Heisenberg groupregularity of solutions /
Ricciotti, Diego.
p-Laplace equation in the Heisenberg group
regularity of solutions /[electronic resource] :by Diego Ricciotti. - Cham :Springer International Publishing :2015. - xiv, 87 p. :ill., digital ;24 cm. - SpringerBriefs in mathematics,2191-8198. - SpringerBriefs in mathematics..
1 Introduction -- 2 The Heisenberg Group -- 3 The p-Laplace Equation -- 4 C1 regularity for the non-degenerate equation -- 5 Lipschitz Regularity.
This works focuses on regularity theory for solutions to the p-Laplace equation in the Heisenberg group. In particular, it presents detailed proofs of smoothness for solutions to the non-degenerate equation and of Lipschitz regularity for solutions to the degenerate one. An introductory chapter presents the basic properties of the Heisenberg group, making the coverage self-contained. The setting is the first Heisenberg group, helping to keep the notation simple and allow the reader to focus on the core of the theory and techniques in the field. Further, detailed proofs make the work accessible to students at the graduate level.
ISBN: 9783319237909$q(electronic bk.)
Standard No.: 10.1007/978-3-319-23790-9doiSubjects--Topical Terms:
323933
Laplacian operator.
LC Class. No.: QA406
Dewey Class. No.: 515.53
p-Laplace equation in the Heisenberg groupregularity of solutions /
LDR
:01791nmm a2200325 a 4500
001
477720
003
DE-He213
005
20160512153056.0
006
m d
007
cr nn 008maaau
008
160614s2015 gw s 0 eng d
020
$a
9783319237909$q(electronic bk.)
020
$a
9783319237893$q(paper)
024
7
$a
10.1007/978-3-319-23790-9
$2
doi
035
$a
978-3-319-23790-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA406
072
7
$a
PBKJ
$2
bicssc
072
7
$a
MAT007000
$2
bisacsh
082
0 4
$a
515.53
$2
23
090
$a
QA406
$b
.R493 2015
100
1
$a
Ricciotti, Diego.
$3
732734
245
1 0
$a
p-Laplace equation in the Heisenberg group
$h
[electronic resource] :
$b
regularity of solutions /
$c
by Diego Ricciotti.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
xiv, 87 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematics,
$x
2191-8198
505
0
$a
1 Introduction -- 2 The Heisenberg Group -- 3 The p-Laplace Equation -- 4 C1 regularity for the non-degenerate equation -- 5 Lipschitz Regularity.
520
$a
This works focuses on regularity theory for solutions to the p-Laplace equation in the Heisenberg group. In particular, it presents detailed proofs of smoothness for solutions to the non-degenerate equation and of Lipschitz regularity for solutions to the degenerate one. An introductory chapter presents the basic properties of the Heisenberg group, making the coverage self-contained. The setting is the first Heisenberg group, helping to keep the notation simple and allow the reader to focus on the core of the theory and techniques in the field. Further, detailed proofs make the work accessible to students at the graduate level.
650
0
$a
Laplacian operator.
$3
323933
650
0
$a
Harmonic functions.
$3
205716
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Ordinary Differential Equations.
$3
273778
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in mathematics.
$3
558795
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-23790-9
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000120552
電子館藏
1圖書
電子書
EB QA406 R493 2015
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
http://dx.doi.org/10.1007/978-3-319-23790-9
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login