Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Compactifying Moduli spaces
~
Bini, Gilberto.
Compactifying Moduli spaces
Record Type:
Electronic resources : Monograph/item
Title/Author:
Compactifying Moduli spacesby Paul Hacking, Radu Laza, Dragos Oprea ; edited by Gilberto Bini ... [et al.].
Author:
Hacking, Paul.
other author:
Laza, Radu.
Published:
Basel :Springer Basel :2016.
Description:
vii, 135 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Moduli theory.
Online resource:
http://dx.doi.org/10.1007/978-3-0348-0921-4
ISBN:
9783034809214$q(electronic bk.)
Compactifying Moduli spaces
Hacking, Paul.
Compactifying Moduli spaces
[electronic resource] /by Paul Hacking, Radu Laza, Dragos Oprea ; edited by Gilberto Bini ... [et al.]. - Basel :Springer Basel :2016. - vii, 135 p. :ill., digital ;24 cm. - Advanced courses in mathematics - CRM barcelona,2297-0304. - Advanced courses in mathematics - CRM barcelona..
Foreword -- 1: Perspectives on moduli spaces -- The GIT Approach to constructing moduli spaces -- Moduli and periods -- The KSBA approach to moduli spaces -- Bibliography -- 2: Compact moduli of surfaces and vector bundles -- Moduli spaces of surfaces of general type -- Wahl singularities -- Examples of degenerations of Wahl type -- Exceptional vector bundles associated to Wahl degenerations -- Examples -- Bibliography -- 3: Notes on the moduli space of stable quotients -- Morphism spaces and Quot schemes over a fixed curve -- Stable quotients -- Stable quotient invariants -- Wall-crossing and other geometries -- Bibliography.
This book focusses on a large class of objects in moduli theory and provides different perspectives from which compactifications of moduli spaces may be investigated. Three contributions give an insight on particular aspects of moduli problems. In the first of them, various ways to construct and compactify moduli spaces are presented. In the second, some questions on the boundary of moduli spaces of surfaces are addressed. Finally, the theory of stable quotients is explained, which yields meaningful compactifications of moduli spaces of maps. Both advanced graduate students and researchers in algebraic geometry will find this book a valuable read.
ISBN: 9783034809214$q(electronic bk.)
Standard No.: 10.1007/978-3-0348-0921-4doiSubjects--Topical Terms:
285972
Moduli theory.
LC Class. No.: QA564
Dewey Class. No.: 516.35
Compactifying Moduli spaces
LDR
:02333nmm a2200325 a 4500
001
483443
003
DE-He213
005
20160825140256.0
006
m d
007
cr nn 008maaau
008
161007s2016 sz s 0 eng d
020
$a
9783034809214$q(electronic bk.)
020
$a
9783034809207$q(paper)
024
7
$a
10.1007/978-3-0348-0921-4
$2
doi
035
$a
978-3-0348-0921-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA564
072
7
$a
PBMW
$2
bicssc
072
7
$a
MAT012010
$2
bisacsh
082
0 4
$a
516.35
$2
23
090
$a
QA564
$b
.H121 2016
100
1
$a
Hacking, Paul.
$3
741012
245
1 0
$a
Compactifying Moduli spaces
$h
[electronic resource] /
$c
by Paul Hacking, Radu Laza, Dragos Oprea ; edited by Gilberto Bini ... [et al.].
260
$a
Basel :
$b
Springer Basel :
$b
Imprint: Birkhauser,
$c
2016.
300
$a
vii, 135 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Advanced courses in mathematics - CRM barcelona,
$x
2297-0304
505
0
$a
Foreword -- 1: Perspectives on moduli spaces -- The GIT Approach to constructing moduli spaces -- Moduli and periods -- The KSBA approach to moduli spaces -- Bibliography -- 2: Compact moduli of surfaces and vector bundles -- Moduli spaces of surfaces of general type -- Wahl singularities -- Examples of degenerations of Wahl type -- Exceptional vector bundles associated to Wahl degenerations -- Examples -- Bibliography -- 3: Notes on the moduli space of stable quotients -- Morphism spaces and Quot schemes over a fixed curve -- Stable quotients -- Stable quotient invariants -- Wall-crossing and other geometries -- Bibliography.
520
$a
This book focusses on a large class of objects in moduli theory and provides different perspectives from which compactifications of moduli spaces may be investigated. Three contributions give an insight on particular aspects of moduli problems. In the first of them, various ways to construct and compactify moduli spaces are presented. In the second, some questions on the boundary of moduli spaces of surfaces are addressed. Finally, the theory of stable quotients is explained, which yields meaningful compactifications of moduli spaces of maps. Both advanced graduate students and researchers in algebraic geometry will find this book a valuable read.
650
0
$a
Moduli theory.
$3
285972
650
0
$a
Geometry, Algebraic.
$3
190843
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Algebraic Geometry.
$3
274807
700
1
$a
Laza, Radu.
$3
729225
700
1
$a
Oprea, Dragos.
$3
741013
700
1
$a
Bini, Gilberto.
$3
702921
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Advanced courses in mathematics - CRM barcelona.
$3
573139
856
4 0
$u
http://dx.doi.org/10.1007/978-3-0348-0921-4
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000123280
電子館藏
1圖書
電子書
EB QA564 H121 2016
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
http://dx.doi.org/10.1007/978-3-0348-0921-4
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login