Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Statistical analysis for high-dimens...
~
(1998 :)
Statistical analysis for high-dimensional dataThe Abel Symposium 2014 /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Statistical analysis for high-dimensional dataedited by Arnoldo Frigessi ... [et al.].
Reminder of title:
The Abel Symposium 2014 /
other author:
Frigessi, Arnoldo.
corporate name:
Published:
Cham :Springer International Publishing :2016.
Description:
xii, 306 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Mathematical statistics
Online resource:
http://dx.doi.org/10.1007/978-3-319-27099-9
ISBN:
9783319270999$q(electronic bk.)
Statistical analysis for high-dimensional dataThe Abel Symposium 2014 /
Statistical analysis for high-dimensional data
The Abel Symposium 2014 /[electronic resource] :edited by Arnoldo Frigessi ... [et al.]. - Cham :Springer International Publishing :2016. - xii, 306 p. :ill., digital ;24 cm. - Abel symposia,112193-2808 ;. - Abel symposia ;9..
Some Themes in High-Dimensional Statistics: A. Frigessi et al -- Laplace Appoximation in High-Dimensional Bayesian Regression: R. Barber, M. Drton et al -- Preselection in Lasso-Type Analysis for Ultra-High Dimensional Genomic Exploration: L.C. Bergersen, I. Glad et al -- Spectral Clustering and Block Models: a Review and a new Algorithm: S. Bhattacharyya et al -- Bayesian Hierarchical Mixture Models: L. Bottelo et al -- iBATCGH; Integrative Bayesian Analysis of Transcriptomic and CGH Data: Cassese, M. Vannucci et al -- Models of Random Sparse Eigenmatrices and Bayesian Analysis of Multivariate Structure: A.J. Cron, M. West -- Combining Single and Paired End RNA-seq Data for Differential Expression Analysis: F. Feng, T.Speed et al -- An Imputation Method for Estimation the Learning Curve in Classification Problems: E. Laber et al -- Baysian Feature Allocation Models for Tumor Heterogeneity: J. Lee, P. Mueller et al -- Bayesian Penalty Mixing: The Case of a Non-Separable Penalty: V. Rockova et al -- Confidence Intervals for Maximin Effects in Inhomogeneous Large Scale Data: D. Rothenhausler et al -- Chisquare Confidence Sets in High-Dimensional Regression: S. van de Geer et al.
This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvagar, Lofoten, Norway, in May 2014. The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in "big data" situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection. Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.
ISBN: 9783319270999$q(electronic bk.)
Standard No.: 10.1007/978-3-319-27099-9doiSubjects--Topical Terms:
182294
Mathematical statistics
LC Class. No.: QA276.A1
Dewey Class. No.: 519.5
Statistical analysis for high-dimensional dataThe Abel Symposium 2014 /
LDR
:03405nmm a2200325 a 4500
001
483455
003
DE-He213
005
20160825141909.0
006
m d
007
cr nn 008maaau
008
161007s2016 gw s 0 eng d
020
$a
9783319270999$q(electronic bk.)
020
$a
9783319270975$q(paper)
024
7
$a
10.1007/978-3-319-27099-9
$2
doi
035
$a
978-3-319-27099-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA276.A1
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT006000
$2
bisacsh
082
0 4
$a
519.5
$2
23
090
$a
QA276.A1
$b
S797 2014
111
2
$n
(3rd :
$d
1998 :
$c
Amsterdam, Netherlands)
$3
194767
245
1 0
$a
Statistical analysis for high-dimensional data
$h
[electronic resource] :
$b
The Abel Symposium 2014 /
$c
edited by Arnoldo Frigessi ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xii, 306 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Abel symposia,
$x
2193-2808 ;
$v
11
505
0
$a
Some Themes in High-Dimensional Statistics: A. Frigessi et al -- Laplace Appoximation in High-Dimensional Bayesian Regression: R. Barber, M. Drton et al -- Preselection in Lasso-Type Analysis for Ultra-High Dimensional Genomic Exploration: L.C. Bergersen, I. Glad et al -- Spectral Clustering and Block Models: a Review and a new Algorithm: S. Bhattacharyya et al -- Bayesian Hierarchical Mixture Models: L. Bottelo et al -- iBATCGH; Integrative Bayesian Analysis of Transcriptomic and CGH Data: Cassese, M. Vannucci et al -- Models of Random Sparse Eigenmatrices and Bayesian Analysis of Multivariate Structure: A.J. Cron, M. West -- Combining Single and Paired End RNA-seq Data for Differential Expression Analysis: F. Feng, T.Speed et al -- An Imputation Method for Estimation the Learning Curve in Classification Problems: E. Laber et al -- Baysian Feature Allocation Models for Tumor Heterogeneity: J. Lee, P. Mueller et al -- Bayesian Penalty Mixing: The Case of a Non-Separable Penalty: V. Rockova et al -- Confidence Intervals for Maximin Effects in Inhomogeneous Large Scale Data: D. Rothenhausler et al -- Chisquare Confidence Sets in High-Dimensional Regression: S. van de Geer et al.
520
$a
This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvagar, Lofoten, Norway, in May 2014. The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in "big data" situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection. Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.
650
0
$a
Mathematical statistics
$3
182294
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Computational Mathematics and Numerical Analysis.
$3
274020
650
2 4
$a
Statistical Theory and Methods.
$3
274054
650
2 4
$a
Bioinformatics.
$3
194415
650
2 4
$a
Statistics and Computing/Statistics Programs.
$3
275710
650
2 4
$a
Statistics for Life Sciences, Medicine, Health Sciences.
$3
274067
650
2 4
$a
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.
$3
348605
700
1
$a
Frigessi, Arnoldo.
$3
741024
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Abel symposia ;
$v
9.
$3
712343
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-27099-9
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000123292
電子館藏
1圖書
電子書
EB QA276.A1 S797 2016
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
http://dx.doi.org/10.1007/978-3-319-27099-9
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login