Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Feasibility model of solar energy pl...
~
Majumder, Mrinmoy.
Feasibility model of solar energy plants by ANN and MCDM techniques
Record Type:
Electronic resources : Monograph/item
Title/Author:
Feasibility model of solar energy plants by ANN and MCDM techniquesby Mrinmoy Majumder, Apu K. Saha.
Author:
Majumder, Mrinmoy.
other author:
Saha, Apu K.
Published:
Singapore :Springer Singapore :2016.
Description:
x, 49 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Solar energyComputer simulation.
Online resource:
http://dx.doi.org/10.1007/978-981-287-308-8
ISBN:
9789812873088$q(electronic bk.)
Feasibility model of solar energy plants by ANN and MCDM techniques
Majumder, Mrinmoy.
Feasibility model of solar energy plants by ANN and MCDM techniques
[electronic resource] /by Mrinmoy Majumder, Apu K. Saha. - Singapore :Springer Singapore :2016. - x, 49 p. :ill. (some col.), digital ;24 cm. - SpringerBriefs in energy,2191-5520. - SpringerBriefs in energy..
Introduction -- Justification -- Solar Energy -- Solar Energy -- Importance -- Benefits of Solar energy -- MCDM -- Definitions -- Applications -- Artificial Neural Network -- Definition -- Development Procedure of Models -- Development of the Feasibility Model -- Application of MCDM -- Development of Feasibility Index -- Model Validation of the Model -- Sensitivity Analysis -- Case Studies -- Locations -- Why this location? -- Results and Discussion -- MCDM Results -- ANN Results -- Conclusion.
This Brief highlights a novel model to find out the feasibility of any location to produce solar energy. The model utilizes the latest multi-criteria decision making techniques and artificial neural networks to predict the suitability of a location to maximize allocation of available energy for producing optimal amount of electricity which will satisfy the demand from the market. According to the results of the case studies further applications are encouraged.
ISBN: 9789812873088$q(electronic bk.)
Standard No.: 10.1007/978-981-287-308-8doiSubjects--Topical Terms:
744712
Solar energy
--Computer simulation.
LC Class. No.: TJ810
Dewey Class. No.: 621.471
Feasibility model of solar energy plants by ANN and MCDM techniques
LDR
:01970nmm a2200325 a 4500
001
486644
003
DE-He213
005
20161006135432.0
006
m d
007
cr nn 008maaau
008
161116s2016 si s 0 eng d
020
$a
9789812873088$q(electronic bk.)
020
$a
9789812873071$q(paper)
024
7
$a
10.1007/978-981-287-308-8
$2
doi
035
$a
978-981-287-308-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TJ810
072
7
$a
THX
$2
bicssc
072
7
$a
TEC031010
$2
bisacsh
082
0 4
$a
621.471
$2
23
090
$a
TJ810
$b
.M234 2016
100
1
$a
Majumder, Mrinmoy.
$3
485116
245
1 0
$a
Feasibility model of solar energy plants by ANN and MCDM techniques
$h
[electronic resource] /
$c
by Mrinmoy Majumder, Apu K. Saha.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2016.
300
$a
x, 49 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in energy,
$x
2191-5520
505
0
$a
Introduction -- Justification -- Solar Energy -- Solar Energy -- Importance -- Benefits of Solar energy -- MCDM -- Definitions -- Applications -- Artificial Neural Network -- Definition -- Development Procedure of Models -- Development of the Feasibility Model -- Application of MCDM -- Development of Feasibility Index -- Model Validation of the Model -- Sensitivity Analysis -- Case Studies -- Locations -- Why this location? -- Results and Discussion -- MCDM Results -- ANN Results -- Conclusion.
520
$a
This Brief highlights a novel model to find out the feasibility of any location to produce solar energy. The model utilizes the latest multi-criteria decision making techniques and artificial neural networks to predict the suitability of a location to maximize allocation of available energy for producing optimal amount of electricity which will satisfy the demand from the market. According to the results of the case studies further applications are encouraged.
650
0
$a
Solar energy
$x
Computer simulation.
$3
744712
650
0
$a
Solar energy
$x
Decision making.
$3
744713
650
1 4
$a
Energy.
$3
212397
650
2 4
$a
Renewable and Green Energy.
$3
309696
650
2 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Energy Technology.
$3
338873
650
2 4
$a
Environmental Economics.
$3
274365
650
2 4
$a
Climate Change/Climate Change Impacts.
$3
657232
700
1
$a
Saha, Apu K.
$3
744711
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in energy.
$3
561922
856
4 0
$u
http://dx.doi.org/10.1007/978-981-287-308-8
950
$a
Energy (Springer-40367)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000125191
電子館藏
1圖書
電子書
EB TJ810 M234 2016
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
http://dx.doi.org/10.1007/978-981-287-308-8
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login