Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Nonlocal diffusion and applications
~
Bucur, Claudia.
Nonlocal diffusion and applications
Record Type:
Electronic resources : Monograph/item
Title/Author:
Nonlocal diffusion and applicationsby Claudia Bucur, Enrico Valdinoci.
Author:
Bucur, Claudia.
other author:
Valdinoci, Enrico.
Published:
Cham :Springer International Publishing :2016.
Description:
xii, 155 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Harmonic functions.
Online resource:
http://dx.doi.org/10.1007/978-3-319-28739-3
ISBN:
9783319287393$q(electronic bk.)
Nonlocal diffusion and applications
Bucur, Claudia.
Nonlocal diffusion and applications
[electronic resource] /by Claudia Bucur, Enrico Valdinoci. - Cham :Springer International Publishing :2016. - xii, 155 p. :ill., digital ;24 cm. - Lecture notes of the Unione Matematica Italiana,201862-9113 ;. - Lecture notes of the Unione Matematica Italiana ;15..
Introduction -- 1 A probabilistic motivation -- 1.1 The random walk with arbitrarily long jumps -- 1.2 A payoff model -- 2 An introduction to the fractional Laplacian -- 2.1 Preliminary notions -- 2.2 Fractional Sobolev Inequality and Generalized Coarea Formula -- 2.3 Maximum Principle and Harnack Inequality -- 2.4 An s-harmonic function -- 2.5 All functions are locally s-harmonic up to a small error -- 2.6 A function with constant fractional Laplacian on the ball -- 3 Extension problems -- 3.1 Water wave model -- 3.2 Crystal dislocation -- 3.3 An approach to the extension problem via the Fourier transform -- 4 Nonlocal phase transitions -- 4.1 The fractional Allen-Cahn equation -- 4.2 A nonlocal version of a conjecture by De Giorgi -- 5 Nonlocal minimal surfaces -- 5.1 Graphs and s-minimal surfaces -- 5.2 Non-existence of singular cones in dimension 2 5.3 Boundary regularity -- 6 A nonlocal nonlinear stationary Schrodinger type equation -- 6.1 From the nonlocal Uncertainty Principle to a fractional weighted inequality -- Alternative proofs of some results -- A.1 Another proof of Theorem A.2 Another proof of Lemma 2.3 -- References.
Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrodinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.
ISBN: 9783319287393$q(electronic bk.)
Standard No.: 10.1007/978-3-319-28739-3doiSubjects--Topical Terms:
205716
Harmonic functions.
LC Class. No.: QA405
Dewey Class. No.: 515.53
Nonlocal diffusion and applications
LDR
:02978nmm a2200325 a 4500
001
486824
003
DE-He213
005
20161012170609.0
006
m d
007
cr nn 008maaau
008
161116s2016 gw s 0 eng d
020
$a
9783319287393$q(electronic bk.)
020
$a
9783319287386$q(paper)
024
7
$a
10.1007/978-3-319-28739-3
$2
doi
035
$a
978-3-319-28739-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA405
072
7
$a
PBKJ
$2
bicssc
072
7
$a
MAT007000
$2
bisacsh
082
0 4
$a
515.53
$2
23
090
$a
QA405
$b
.B926 2016
100
1
$a
Bucur, Claudia.
$3
745053
245
1 0
$a
Nonlocal diffusion and applications
$h
[electronic resource] /
$c
by Claudia Bucur, Enrico Valdinoci.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xii, 155 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes of the Unione Matematica Italiana,
$x
1862-9113 ;
$v
20
505
0
$a
Introduction -- 1 A probabilistic motivation -- 1.1 The random walk with arbitrarily long jumps -- 1.2 A payoff model -- 2 An introduction to the fractional Laplacian -- 2.1 Preliminary notions -- 2.2 Fractional Sobolev Inequality and Generalized Coarea Formula -- 2.3 Maximum Principle and Harnack Inequality -- 2.4 An s-harmonic function -- 2.5 All functions are locally s-harmonic up to a small error -- 2.6 A function with constant fractional Laplacian on the ball -- 3 Extension problems -- 3.1 Water wave model -- 3.2 Crystal dislocation -- 3.3 An approach to the extension problem via the Fourier transform -- 4 Nonlocal phase transitions -- 4.1 The fractional Allen-Cahn equation -- 4.2 A nonlocal version of a conjecture by De Giorgi -- 5 Nonlocal minimal surfaces -- 5.1 Graphs and s-minimal surfaces -- 5.2 Non-existence of singular cones in dimension 2 5.3 Boundary regularity -- 6 A nonlocal nonlinear stationary Schrodinger type equation -- 6.1 From the nonlocal Uncertainty Principle to a fractional weighted inequality -- Alternative proofs of some results -- A.1 Another proof of Theorem A.2 Another proof of Lemma 2.3 -- References.
520
$a
Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrodinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.
650
0
$a
Harmonic functions.
$3
205716
650
0
$a
Laplace transformation.
$3
239791
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Partial Differential Equations.
$3
274075
650
2 4
$a
Calculus of Variations and Optimal Control; Optimization.
$3
274198
650
2 4
$a
Integral Transforms, Operational Calculus.
$3
275781
650
2 4
$a
Functional Analysis.
$3
274845
700
1
$a
Valdinoci, Enrico.
$3
745054
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Lecture notes of the Unione Matematica Italiana ;
$v
15.
$3
701769
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-28739-3
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000125371
電子館藏
1圖書
電子書
EB QA405 B926 2016
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
http://dx.doi.org/10.1007/978-3-319-28739-3
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login