Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Big data optimizationrecent developm...
~
Emrouznejad, Ali.
Big data optimizationrecent developments and challenges /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Big data optimizationedited by Ali Emrouznejad.
Reminder of title:
recent developments and challenges /
other author:
Emrouznejad, Ali.
Published:
Cham :Springer International Publishing :2016.
Description:
xv, 487 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Big data.
Online resource:
http://dx.doi.org/10.1007/978-3-319-30265-2
ISBN:
9783319302652$q(electronic bk.)
Big data optimizationrecent developments and challenges /
Big data optimization
recent developments and challenges /[electronic resource] :edited by Ali Emrouznejad. - Cham :Springer International Publishing :2016. - xv, 487 p. :ill. (some col.), digital ;24 cm. - Studies in big data,v.182197-6503 ;. - Studies in big data ;v.1..
Big data: Who, What and Where? Social, Cognitive and Journals Map of Big Data Publications with Focus on Optimization -- Setting up a Big Data Project: Challenges, Opportunities, Technologies and Optimization -- Optimizing Intelligent Reduction Techniques for Big Data -- Performance Tools for Big Data Optimization -- Optimising Big Images -- Interlinking Big Data to Web of Data -- Topology, Big Data and Optimization -- Applications of Big Data Analytics Tools for Data Management -- Optimizing Access Policies for Big Data Repositories: Latency Variables and the Genome Commons -- Big Data Optimization via Next Generation Data Center Architecture -- Big Data Optimization within Real World Monitoring Constraints -- Smart Sampling and Optimal Dimensionality Reduction of Big Data Using Compressed Sensing -- Optimized Management of BIG Data Produced in Brain Disorder Rehabilitation -- Big Data Optimization in Maritime Logistics -- Big Network Analytics Based on Nonconvex Optimization -- Large-scale and Big Optimization Based on Hadoop -- Computational Approaches in Large-Scale Unconstrained Optimization -- Numerical Methods for Large-Scale Nonsmooth Optimization -- Metaheuristics for Continuous Optimization of High-Dimensional Problems: State of the Art and Perspectives -- Convergent Parallel Algorithms for Big Data Optimization Problems.
The main objective of this book is to provide the necessary background to work with big data by introducing some novel optimization algorithms and codes capable of working in the big data setting as well as introducing some applications in big data optimization for both academics and practitioners interested, and to benefit society, industry, academia, and government. Presenting applications in a variety of industries, this book will be useful for the researchers aiming to analyses large scale data. Several optimization algorithms for big data including convergent parallel algorithms, limited memory bundle algorithm, diagonal bundle method, convergent parallel algorithms, network analytics, and many more have been explored in this book.
ISBN: 9783319302652$q(electronic bk.)
Standard No.: 10.1007/978-3-319-30265-2doiSubjects--Topical Terms:
609582
Big data.
LC Class. No.: QA76.9.B45
Dewey Class. No.: 005.7
Big data optimizationrecent developments and challenges /
LDR
:03103nmm a2200325 a 4500
001
489274
003
DE-He213
005
20161019132746.0
006
m d
007
cr nn 008maaau
008
161213s2016 gw s 0 eng d
020
$a
9783319302652$q(electronic bk.)
020
$a
9783319302638$q(paper)
024
7
$a
10.1007/978-3-319-30265-2
$2
doi
035
$a
978-3-319-30265-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.B45
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
005.7
$2
23
090
$a
QA76.9.B45
$b
B592 2016
245
0 0
$a
Big data optimization
$h
[electronic resource] :
$b
recent developments and challenges /
$c
edited by Ali Emrouznejad.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xv, 487 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Studies in big data,
$x
2197-6503 ;
$v
v.18
505
0
$a
Big data: Who, What and Where? Social, Cognitive and Journals Map of Big Data Publications with Focus on Optimization -- Setting up a Big Data Project: Challenges, Opportunities, Technologies and Optimization -- Optimizing Intelligent Reduction Techniques for Big Data -- Performance Tools for Big Data Optimization -- Optimising Big Images -- Interlinking Big Data to Web of Data -- Topology, Big Data and Optimization -- Applications of Big Data Analytics Tools for Data Management -- Optimizing Access Policies for Big Data Repositories: Latency Variables and the Genome Commons -- Big Data Optimization via Next Generation Data Center Architecture -- Big Data Optimization within Real World Monitoring Constraints -- Smart Sampling and Optimal Dimensionality Reduction of Big Data Using Compressed Sensing -- Optimized Management of BIG Data Produced in Brain Disorder Rehabilitation -- Big Data Optimization in Maritime Logistics -- Big Network Analytics Based on Nonconvex Optimization -- Large-scale and Big Optimization Based on Hadoop -- Computational Approaches in Large-Scale Unconstrained Optimization -- Numerical Methods for Large-Scale Nonsmooth Optimization -- Metaheuristics for Continuous Optimization of High-Dimensional Problems: State of the Art and Perspectives -- Convergent Parallel Algorithms for Big Data Optimization Problems.
520
$a
The main objective of this book is to provide the necessary background to work with big data by introducing some novel optimization algorithms and codes capable of working in the big data setting as well as introducing some applications in big data optimization for both academics and practitioners interested, and to benefit society, industry, academia, and government. Presenting applications in a variety of industries, this book will be useful for the researchers aiming to analyses large scale data. Several optimization algorithms for big data including convergent parallel algorithms, limited memory bundle algorithm, diagonal bundle method, convergent parallel algorithms, network analytics, and many more have been explored in this book.
650
0
$a
Big data.
$3
609582
650
1 4
$a
Engineering.
$3
210888
650
2 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
252959
650
2 4
$a
Operation Research/Decision Theory.
$3
585050
700
1
$a
Emrouznejad, Ali.
$3
677109
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Studies in big data ;
$v
v.1.
$3
675357
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-30265-2
950
$a
Engineering (Springer-11647)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000126785
電子館藏
1圖書
電子書
EB QA76.9.B45 B592 2016
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
http://dx.doi.org/10.1007/978-3-319-30265-2
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login