Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Machine learning for evolution strat...
~
Kramer, Oliver.
Machine learning for evolution strategies
Record Type:
Electronic resources : Monograph/item
Title/Author:
Machine learning for evolution strategiesby Oliver Kramer.
Author:
Kramer, Oliver.
Published:
Cham :Springer International Publishing :2016.
Description:
ix, 124 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Machine learning.
Online resource:
http://dx.doi.org/10.1007/978-3-319-33383-0
ISBN:
9783319333830$q(electronic bk.)
Machine learning for evolution strategies
Kramer, Oliver.
Machine learning for evolution strategies
[electronic resource] /by Oliver Kramer. - Cham :Springer International Publishing :2016. - ix, 124 p. :ill., digital ;24 cm. - Studies in big data,v.202197-6503 ;. - Studies in big data ;v.1..
Part I Evolution Strategies -- Part II Machine Learning -- Part III Supervised Learning.
This book introduces numerous algorithmic hybridizations between both worlds that show how machine learning can improve and support evolution strategies. The set of methods comprises covariance matrix estimation, meta-modeling of fitness and constraint functions, dimensionality reduction for search and visualization of high-dimensional optimization processes, and clustering-based niching. After giving an introduction to evolution strategies and machine learning, the book builds the bridge between both worlds with an algorithmic and experimental perspective. Experiments mostly employ a (1+1)-ES and are implemented in Python using the machine learning library scikit-learn. The examples are conducted on typical benchmark problems illustrating algorithmic concepts and their experimental behavior. The book closes with a discussion of related lines of research.
ISBN: 9783319333830$q(electronic bk.)
Standard No.: 10.1007/978-3-319-33383-0doiSubjects--Topical Terms:
188639
Machine learning.
LC Class. No.: Q325.5
Dewey Class. No.: 006.31
Machine learning for evolution strategies
LDR
:01913nmm a2200325 a 4500
001
489302
003
DE-He213
005
20161020131021.0
006
m d
007
cr nn 008maaau
008
161213s2016 gw s 0 eng d
020
$a
9783319333830$q(electronic bk.)
020
$a
9783319333816$q(paper)
024
7
$a
10.1007/978-3-319-33383-0
$2
doi
035
$a
978-3-319-33383-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.K89 2016
100
1
$a
Kramer, Oliver.
$3
307657
245
1 0
$a
Machine learning for evolution strategies
$h
[electronic resource] /
$c
by Oliver Kramer.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
ix, 124 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Studies in big data,
$x
2197-6503 ;
$v
v.20
505
0
$a
Part I Evolution Strategies -- Part II Machine Learning -- Part III Supervised Learning.
520
$a
This book introduces numerous algorithmic hybridizations between both worlds that show how machine learning can improve and support evolution strategies. The set of methods comprises covariance matrix estimation, meta-modeling of fitness and constraint functions, dimensionality reduction for search and visualization of high-dimensional optimization processes, and clustering-based niching. After giving an introduction to evolution strategies and machine learning, the book builds the bridge between both worlds with an algorithmic and experimental perspective. Experiments mostly employ a (1+1)-ES and are implemented in Python using the machine learning library scikit-learn. The examples are conducted on typical benchmark problems illustrating algorithmic concepts and their experimental behavior. The book closes with a discussion of related lines of research.
650
0
$a
Machine learning.
$3
188639
650
1 4
$a
Engineering.
$3
210888
650
2 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Simulation and Modeling.
$3
273719
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
275288
650
2 4
$a
Socio- and Econophysics, Population and Evolutionary Models.
$3
495595
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
252959
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Studies in big data ;
$v
v.1.
$3
675357
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-33383-0
950
$a
Engineering (Springer-11647)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000126813
電子館藏
1圖書
電子書
EB Q325.5 K89 2016
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
http://dx.doi.org/10.1007/978-3-319-33383-0
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login