Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Estimation and testing under sparsit...
~
Geer, Sara van de.
Estimation and testing under sparsityEcole d'Ete de probabilites de Saint-Flour XLV - 2015 /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Estimation and testing under sparsityby Sara van de Geer.
Reminder of title:
Ecole d'Ete de probabilites de Saint-Flour XLV - 2015 /
Author:
Geer, Sara van de.
Published:
Cham :Springer International Publishing :2016.
Description:
xiii, 274 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Estimation theory.
Online resource:
http://dx.doi.org/10.1007/978-3-319-32774-7
ISBN:
9783319327747$q(electronic bk.)
Estimation and testing under sparsityEcole d'Ete de probabilites de Saint-Flour XLV - 2015 /
Geer, Sara van de.
Estimation and testing under sparsity
Ecole d'Ete de probabilites de Saint-Flour XLV - 2015 /[electronic resource] :by Sara van de Geer. - Cham :Springer International Publishing :2016. - xiii, 274 p. :ill., digital ;24 cm. - Lecture notes in mathematics,21590075-8434 ;. - Lecture notes in mathematics ;2035..
1 Introduction -- The Lasso -- 3 The square-root Lasso -- 4 The bias of the Lasso and worst possible sub-directions -- 5 Confidence intervals using the Lasso -- 6 Structured sparsity -- 7 General loss with norm-penalty -- 8 Empirical process theory for dual norms -- 9 Probability inequalities for matrices -- 10 Inequalities for the centred empirical risk and its derivative -- 11 The margin condition -- 12 Some worked-out examples -- 13 Brouwer's fixed point theorem and sparsity -- 14 Asymptotically linear estimators of the precision matrix -- 15 Lower bounds for sparse quadratic forms -- 16 Symmetrization, contraction and concentration -- 17 Chaining including concentration -- 18 Metric structure of convex hulls.
Taking the Lasso method as its starting point, this book describes the main ingredients needed to study general loss functions and sparsity-inducing regularizers. It also provides a semi-parametric approach to establishing confidence intervals and tests. Sparsity-inducing methods have proven to be very useful in the analysis of high-dimensional data. Examples include the Lasso and group Lasso methods, and the least squares method with other norm-penalties, such as the nuclear norm. The illustrations provided include generalized linear models, density estimation, matrix completion and sparse principal components. Each chapter ends with a problem section. The book can be used as a textbook for a graduate or PhD course.
ISBN: 9783319327747$q(electronic bk.)
Standard No.: 10.1007/978-3-319-32774-7doiSubjects--Topical Terms:
181864
Estimation theory.
LC Class. No.: QA276.8
Dewey Class. No.: 519.544
Estimation and testing under sparsityEcole d'Ete de probabilites de Saint-Flour XLV - 2015 /
LDR
:02521nmm a2200337 a 4500
001
490760
003
DE-He213
005
20161129113539.0
006
m d
007
cr nn 008maaau
008
170118s2016 gw s 0 eng d
020
$a
9783319327747$q(electronic bk.)
020
$a
9783319327730$q(paper)
024
7
$a
10.1007/978-3-319-32774-7
$2
doi
035
$a
978-3-319-32774-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA276.8
072
7
$a
PBT
$2
bicssc
072
7
$a
PBWL
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
082
0 4
$a
519.544
$2
23
090
$a
QA276.8
$b
.G298 2016
100
1
$a
Geer, Sara van de.
$3
522728
245
1 0
$a
Estimation and testing under sparsity
$h
[electronic resource] :
$b
Ecole d'Ete de probabilites de Saint-Flour XLV - 2015 /
$c
by Sara van de Geer.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xiii, 274 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematics,
$x
0075-8434 ;
$v
2159
505
0
$a
1 Introduction -- The Lasso -- 3 The square-root Lasso -- 4 The bias of the Lasso and worst possible sub-directions -- 5 Confidence intervals using the Lasso -- 6 Structured sparsity -- 7 General loss with norm-penalty -- 8 Empirical process theory for dual norms -- 9 Probability inequalities for matrices -- 10 Inequalities for the centred empirical risk and its derivative -- 11 The margin condition -- 12 Some worked-out examples -- 13 Brouwer's fixed point theorem and sparsity -- 14 Asymptotically linear estimators of the precision matrix -- 15 Lower bounds for sparse quadratic forms -- 16 Symmetrization, contraction and concentration -- 17 Chaining including concentration -- 18 Metric structure of convex hulls.
520
$a
Taking the Lasso method as its starting point, this book describes the main ingredients needed to study general loss functions and sparsity-inducing regularizers. It also provides a semi-parametric approach to establishing confidence intervals and tests. Sparsity-inducing methods have proven to be very useful in the analysis of high-dimensional data. Examples include the Lasso and group Lasso methods, and the least squares method with other norm-penalties, such as the nuclear norm. The illustrations provided include generalized linear models, density estimation, matrix completion and sparse principal components. Each chapter ends with a problem section. The book can be used as a textbook for a graduate or PhD course.
650
0
$a
Estimation theory.
$3
181864
650
0
$a
Inequalities (Mathematics)
$3
183909
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Probability Theory and Stochastic Processes.
$3
274061
650
2 4
$a
Statistical Theory and Methods.
$3
274054
650
2 4
$a
Probability and Statistics in Computer Science.
$3
274053
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Lecture notes in mathematics ;
$v
2035.
$3
557764
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-32774-7
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000127918
電子館藏
1圖書
電子書
EB QA276.8 G298 2016
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
http://dx.doi.org/10.1007/978-3-319-32774-7
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login