Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Hybrid soft computing for multilevel...
~
De, Sourav.
Hybrid soft computing for multilevel image and data segmentation
Record Type:
Electronic resources : Monograph/item
Title/Author:
Hybrid soft computing for multilevel image and data segmentationby Sourav De ... [et al.].
other author:
De, Sourav.
Published:
Cham :Springer International Publishing :2016.
Description:
xiv, 235 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Image segmentation.
Online resource:
http://dx.doi.org/10.1007/978-3-319-47524-0
ISBN:
9783319475240$q(electronic bk.)
Hybrid soft computing for multilevel image and data segmentation
Hybrid soft computing for multilevel image and data segmentation
[electronic resource] /by Sourav De ... [et al.]. - Cham :Springer International Publishing :2016. - xiv, 235 p. :ill., digital ;24 cm. - Computational intelligence methods and applications,2510-1765. - Computational intelligence methods and applications..
Introduction -- Image Segmentation: A Review -- Self-supervised Gray Level Image Segmentation Using an Optimized MUSIG (OptiMUSIG) Activation Function -- Self-supervised Color Image Segmentation Using Parallel OptiMUSIG (ParaOptiMUSIG) Activation Function -- Self-supervised Gray Level Image Segmentation Using Multiobjective Based Optimized MUSIG (OptiMUSIG) Activation Function -- Self-supervised Color Image Segmentation Using Multiobjective Based Parallel Optimized MUSIG (ParaOptiMUSIG) Activation Function -- Unsupervised Genetic Algorithm Based Automatic Image Segmentation and Data Clustering Technique Validated by Fuzzy Intercluster Hostility Index.
This book explains efficient solutions for segmenting the intensity levels of different types of multilevel images. The authors present hybrid soft computing techniques, which have advantages over conventional soft computing solutions as they incorporate data heterogeneity into the clustering/segmentation procedures. This is a useful introduction and reference for researchers and graduate students of computer science and electronics engineering, particularly in the domains of image processing and computational intelligence.
ISBN: 9783319475240$q(electronic bk.)
Standard No.: 10.1007/978-3-319-47524-0doiSubjects--Topical Terms:
710586
Image segmentation.
LC Class. No.: TA1632
Dewey Class. No.: 006.6
Hybrid soft computing for multilevel image and data segmentation
LDR
:02238nmm a2200337 a 4500
001
499784
003
DE-He213
005
20161111113623.0
006
m d
007
cr nn 008maaau
008
170621s2016 gw s 0 eng d
020
$a
9783319475240$q(electronic bk.)
020
$a
9783319475233$q(paper)
024
7
$a
10.1007/978-3-319-47524-0
$2
doi
035
$a
978-3-319-47524-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TA1632
072
7
$a
UYQ
$2
bicssc
072
7
$a
TJFM1
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
006.6
$2
23
090
$a
TA1632
$b
.H992 2016
245
0 0
$a
Hybrid soft computing for multilevel image and data segmentation
$h
[electronic resource] /
$c
by Sourav De ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xiv, 235 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Computational intelligence methods and applications,
$x
2510-1765
505
0
$a
Introduction -- Image Segmentation: A Review -- Self-supervised Gray Level Image Segmentation Using an Optimized MUSIG (OptiMUSIG) Activation Function -- Self-supervised Color Image Segmentation Using Parallel OptiMUSIG (ParaOptiMUSIG) Activation Function -- Self-supervised Gray Level Image Segmentation Using Multiobjective Based Optimized MUSIG (OptiMUSIG) Activation Function -- Self-supervised Color Image Segmentation Using Multiobjective Based Parallel Optimized MUSIG (ParaOptiMUSIG) Activation Function -- Unsupervised Genetic Algorithm Based Automatic Image Segmentation and Data Clustering Technique Validated by Fuzzy Intercluster Hostility Index.
520
$a
This book explains efficient solutions for segmenting the intensity levels of different types of multilevel images. The authors present hybrid soft computing techniques, which have advantages over conventional soft computing solutions as they incorporate data heterogeneity into the clustering/segmentation procedures. This is a useful introduction and reference for researchers and graduate students of computer science and electronics engineering, particularly in the domains of image processing and computational intelligence.
650
0
$a
Image segmentation.
$3
710586
650
0
$a
Soft computing.
$3
182083
650
1 4
$a
Computer Science.
$3
212513
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
252959
650
2 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Computer Imaging, Vision, Pattern Recognition and Graphics.
$3
274492
700
1
$a
De, Sourav.
$3
762773
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Computational intelligence methods and applications.
$3
762774
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-47524-0
950
$a
Computer Science (Springer-11645)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000134149
電子館藏
1圖書
電子書
EB TA1632 H992 2016
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
http://dx.doi.org/10.1007/978-3-319-47524-0
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login