語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Quadratic residues and non-residuess...
~
SpringerLink (Online service)
Quadratic residues and non-residuesselected topics /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Quadratic residues and non-residuesby Steve Wright.
其他題名:
selected topics /
作者:
Wright, Steve.
出版者:
Cham :Springer International Publishing :2016.
面頁冊數:
xiii, 292 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Congruences and residues.
電子資源:
http://dx.doi.org/10.1007/978-3-319-45955-4
ISBN:
9783319459554$q(electronic bk.)
Quadratic residues and non-residuesselected topics /
Wright, Steve.
Quadratic residues and non-residues
selected topics /[electronic resource] :by Steve Wright. - Cham :Springer International Publishing :2016. - xiii, 292 p. :ill., digital ;24 cm. - Lecture notes in mathematics,21710075-8434 ;. - Lecture notes in mathematics ;2035..
Chapter 1. Introduction: Solving the General Quadratic Congruence Modulo a Prime -- Chapter 2. Basic Facts -- Chapter 3. Gauss' Theorema Aureum: the Law of Quadratic Reciprocity -- Chapter 4. Four Interesting Applications of Quadratic Reciprocity -- Chapter 5. The Zeta Function of an Algebraic Number Field and Some Applications -- Chapter 6. Elementary Proofs -- Chapter 7. Dirichlet L-functions and the Distribution of Quadratic Residues -- Chapter 8. Dirichlet's Class-Number Formula -- Chapter 9. Quadratic Residues and Non-residues in Arithmetic Progression -- Chapter 10. Are quadratic residues randomly distributed? -- Bibliography.
This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory. The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet's Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.
ISBN: 9783319459554$q(electronic bk.)
Standard No.: 10.1007/978-3-319-45955-4doiSubjects--Topical Terms:
761591
Congruences and residues.
LC Class. No.: QA242
Dewey Class. No.: 512.72
Quadratic residues and non-residuesselected topics /
LDR
:02647nmm a2200325 a 4500
001
500059
003
DE-He213
005
20161114081506.0
006
m d
007
cr nn 008maaau
008
170621s2016 gw s 0 eng d
020
$a
9783319459554$q(electronic bk.)
020
$a
9783319459547$q(paper)
024
7
$a
10.1007/978-3-319-45955-4
$2
doi
035
$a
978-3-319-45955-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA242
072
7
$a
PBH
$2
bicssc
072
7
$a
MAT022000
$2
bisacsh
082
0 4
$a
512.72
$2
23
090
$a
QA242
$b
.W953 2016
100
1
$a
Wright, Steve.
$3
404879
245
1 0
$a
Quadratic residues and non-residues
$h
[electronic resource] :
$b
selected topics /
$c
by Steve Wright.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xiii, 292 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematics,
$x
0075-8434 ;
$v
2171
505
0
$a
Chapter 1. Introduction: Solving the General Quadratic Congruence Modulo a Prime -- Chapter 2. Basic Facts -- Chapter 3. Gauss' Theorema Aureum: the Law of Quadratic Reciprocity -- Chapter 4. Four Interesting Applications of Quadratic Reciprocity -- Chapter 5. The Zeta Function of an Algebraic Number Field and Some Applications -- Chapter 6. Elementary Proofs -- Chapter 7. Dirichlet L-functions and the Distribution of Quadratic Residues -- Chapter 8. Dirichlet's Class-Number Formula -- Chapter 9. Quadratic Residues and Non-residues in Arithmetic Progression -- Chapter 10. Are quadratic residues randomly distributed? -- Bibliography.
520
$a
This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory. The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet's Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.
650
0
$a
Congruences and residues.
$3
761591
650
0
$a
Number theory.
$3
189521
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Number Theory.
$3
274059
650
2 4
$a
Commutative Rings and Algebras.
$3
274057
650
2 4
$a
Field Theory and Polynomials.
$3
274058
650
2 4
$a
Convex and Discrete Geometry.
$3
277230
650
2 4
$a
Fourier Analysis.
$3
273776
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Lecture notes in mathematics ;
$v
2035.
$3
557764
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-45955-4
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000134424
電子館藏
1圖書
電子書
EB QA242 W953 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-45955-4
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入