Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Data Science Using Oracle Data Miner...
~
Das, Sibanjan.
Data Science Using Oracle Data Miner and Oracle R Enterprisetransform your business systems into an analytical powerhouse /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Data Science Using Oracle Data Miner and Oracle R Enterpriseby Sibanjan Das.
Reminder of title:
transform your business systems into an analytical powerhouse /
Author:
Das, Sibanjan.
Published:
Berkeley, CA :Apress :2016.
Description:
xxii, 289 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Data mining.
Online resource:
http://dx.doi.org/10.1007/978-1-4842-2614-8
ISBN:
9781484226148$q(electronic bk.)
Data Science Using Oracle Data Miner and Oracle R Enterprisetransform your business systems into an analytical powerhouse /
Das, Sibanjan.
Data Science Using Oracle Data Miner and Oracle R Enterprise
transform your business systems into an analytical powerhouse /[electronic resource] :by Sibanjan Das. - Berkeley, CA :Apress :2016. - xxii, 289 p. :ill., digital ;24 cm.
Introduction Chapter 1 : Getting Started with Oracle Advanced Analytics -- Chapter 2 : Installation and Hello World -- Chapter 3: Clustering Methods -- Chapter 4: Association Rules -- Chapter 5: Regression Analysis -- Chapter 6: Classification Techniques -- Chapter 7: Advanced Topics -- Chapter 8: Solution Deployment.
Automate the predictive analytics process using Oracle Data Miner and Oracle R Enterprise. This book talks about how both these technologies can provide a framework for in-database predictive analytics. You'll see a unified architecture and embedded workflow to automate various analytics steps such as data preprocessing, model creation, and storing final model output to tables. You'll take a deep dive into various statistical models commonly used in businesses and how they can be automated for predictive analytics using various SQL, PLSQL, ORE, ODM, and native R packages. You'll get to know various options available in the ODM workflow for driving automation. Also, you'll get an understanding of various ways to integrate ODM packages, ORE, and native R packages using PLSQL for automating the processes.
ISBN: 9781484226148$q(electronic bk.)
Standard No.: 10.1007/978-1-4842-2614-8doiSubjects--Topical Terms:
184440
Data mining.
LC Class. No.: QA76.9.D343
Dewey Class. No.: 006.312
Data Science Using Oracle Data Miner and Oracle R Enterprisetransform your business systems into an analytical powerhouse /
LDR
:02098nmm a2200289 a 4500
001
501198
003
DE-He213
005
20161223031143.0
006
m d
007
cr nn 008maaau
008
170718s2016 cau s 0 eng d
020
$a
9781484226148$q(electronic bk.)
020
$a
9781484226131$q(paper)
024
7
$a
10.1007/978-1-4842-2614-8
$2
doi
035
$a
978-1-4842-2614-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D343
082
0 4
$a
006.312
$2
23
090
$a
QA76.9.D343
$b
D229 2016
100
1
$a
Das, Sibanjan.
$3
764581
245
1 0
$a
Data Science Using Oracle Data Miner and Oracle R Enterprise
$h
[electronic resource] :
$b
transform your business systems into an analytical powerhouse /
$c
by Sibanjan Das.
260
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2016.
300
$a
xxii, 289 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Introduction Chapter 1 : Getting Started with Oracle Advanced Analytics -- Chapter 2 : Installation and Hello World -- Chapter 3: Clustering Methods -- Chapter 4: Association Rules -- Chapter 5: Regression Analysis -- Chapter 6: Classification Techniques -- Chapter 7: Advanced Topics -- Chapter 8: Solution Deployment.
520
$a
Automate the predictive analytics process using Oracle Data Miner and Oracle R Enterprise. This book talks about how both these technologies can provide a framework for in-database predictive analytics. You'll see a unified architecture and embedded workflow to automate various analytics steps such as data preprocessing, model creation, and storing final model output to tables. You'll take a deep dive into various statistical models commonly used in businesses and how they can be automated for predictive analytics using various SQL, PLSQL, ORE, ODM, and native R packages. You'll get to know various options available in the ODM workflow for driving automation. Also, you'll get an understanding of various ways to integrate ODM packages, ORE, and native R packages using PLSQL for automating the processes.
650
0
$a
Data mining.
$3
184440
650
0
$a
Computer science.
$3
199325
650
0
$a
Programming languages (Electronic computers)
$3
184586
650
0
$a
Database management.
$3
182428
650
1 4
$a
Computer Science.
$3
212513
650
2 4
$a
Big Data.
$3
760530
650
2 4
$a
Database Management.
$3
273994
650
2 4
$a
Programming Languages, Compilers, Interpreters.
$3
274102
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-1-4842-2614-8
950
$a
Professional and Applied Computing (Springer-12059)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000134940
電子館藏
1圖書
電子書
EB QA76.9.D343 D229 2016
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
http://dx.doi.org/10.1007/978-1-4842-2614-8
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login