Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Fundamentals of radiation materials ...
~
SpringerLink (Online service)
Fundamentals of radiation materials sciencemetals and alloys /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Fundamentals of radiation materials scienceby Gary S. Was.
Reminder of title:
metals and alloys /
Author:
Was, Gary S.
Published:
New York, NY :Springer New York :2017.
Description:
xxvii, 1002 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
MetalsEffect of radiation on.
Online resource:
http://dx.doi.org/10.1007/978-1-4939-3438-6
ISBN:
9781493934386$q(electronic bk.)
Fundamentals of radiation materials sciencemetals and alloys /
Was, Gary S.
Fundamentals of radiation materials science
metals and alloys /[electronic resource] :by Gary S. Was. - 2nd ed. - New York, NY :Springer New York :2017. - xxvii, 1002 p. :ill., digital ;24 cm.
Part I Radiation Damage -- 1 The Radiation Damage Event -- 2 The Displacement of Atoms -- 3 The Damage Cascade -- 4 Point Defect Formation and Diffusion -- 5 Radiation-Enhanced and Diffusion Defect Reaction Rate Theory -- Part II Physical Effects of Radiation Damage -- 6 Radiation-Induced Segregation -- 7 Dislocation Microstructure -- 8 Irradiation-Induced Voids and Bubbles -- 9 Phase Stability Under Irradiation -- 10 Unique Effects of Ion Irradiation -- 11 Simulation of Neutron Irradiation Effects with Ions -- Part III Mechanical Effects of Radiation Damage -- 12 Irradiation Hardening and Deformation -- 13 Irradiation Creep and Growth -- 14 Fracture and Embrittlement -- 15 Corrosion and Stress Corrosion Cracking Fundamentals -- 16 Effects of Irradiation on Corrosion and Environmentally Assisted Cracking -- Index. .
The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of the multi-frequency model of diffusion, numerous examples of RIS in austenitic and ferritic-martensitic alloys, expanded treatment of in-cascade defect clustering, cluster evolution, and cluster mobility, new discussion of void behavior near grain boundaries, a new section on ion beam assisted deposition, and reorganization of hardening, creep and fracture of irradiated materials (Chaps 12-14) to provide a smoother and more integrated transition between the topics. The book also contains two new chapters. Chapter 15 focuses on the fundamentals of corrosion and stress corrosion cracking, covering forms of corrosion, corrosion thermodynamics, corrosion kinetics, polarization theory, passivity, crevice corrosion, and stress corrosion cracking. Chapter 16 extends this treatment and considers the effects of irradiation on corrosion and environmentally assisted corrosion, including the effects of irradiation on water chemistry and the mechanisms of irradiation-induced stress corrosion cracking. The book maintains the previous style, concepts are developed systematically and quantitatively, supported by worked examples, references for further reading, end-of-chapter problem sets and an online solutions manual. Aimed primarily and students of materials sciences and nuclear engineering, the book will also provide a valuable resource for academic and industrial research professionals.
ISBN: 9781493934386$q(electronic bk.)
Standard No.: 10.1007/978-1-4939-3438-6doiSubjects--Topical Terms:
769451
Metals
--Effect of radiation on.
LC Class. No.: TA459
Dewey Class. No.: 620.16
Fundamentals of radiation materials sciencemetals and alloys /
LDR
:04203nmm a2200325 a 4500
001
504589
003
DE-He213
005
20160708204801.0
006
m d
007
cr nn 008maaau
008
171030s2017 nyu s 0 eng d
020
$a
9781493934386$q(electronic bk.)
020
$a
9781493934362$q(paper)
024
7
$a
10.1007/978-1-4939-3438-6
$2
doi
035
$a
978-1-4939-3438-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TA459
072
7
$a
THK
$2
bicssc
072
7
$a
TEC028000
$2
bisacsh
082
0 4
$a
620.16
$2
23
090
$a
TA459
$b
.W312 2017
100
1
$a
Was, Gary S.
$3
769450
245
1 0
$a
Fundamentals of radiation materials science
$h
[electronic resource] :
$b
metals and alloys /
$c
by Gary S. Was.
250
$a
2nd ed.
260
$a
New York, NY :
$b
Springer New York :
$b
Imprint: Springer,
$c
2017.
300
$a
xxvii, 1002 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Part I Radiation Damage -- 1 The Radiation Damage Event -- 2 The Displacement of Atoms -- 3 The Damage Cascade -- 4 Point Defect Formation and Diffusion -- 5 Radiation-Enhanced and Diffusion Defect Reaction Rate Theory -- Part II Physical Effects of Radiation Damage -- 6 Radiation-Induced Segregation -- 7 Dislocation Microstructure -- 8 Irradiation-Induced Voids and Bubbles -- 9 Phase Stability Under Irradiation -- 10 Unique Effects of Ion Irradiation -- 11 Simulation of Neutron Irradiation Effects with Ions -- Part III Mechanical Effects of Radiation Damage -- 12 Irradiation Hardening and Deformation -- 13 Irradiation Creep and Growth -- 14 Fracture and Embrittlement -- 15 Corrosion and Stress Corrosion Cracking Fundamentals -- 16 Effects of Irradiation on Corrosion and Environmentally Assisted Cracking -- Index. .
520
$a
The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of the multi-frequency model of diffusion, numerous examples of RIS in austenitic and ferritic-martensitic alloys, expanded treatment of in-cascade defect clustering, cluster evolution, and cluster mobility, new discussion of void behavior near grain boundaries, a new section on ion beam assisted deposition, and reorganization of hardening, creep and fracture of irradiated materials (Chaps 12-14) to provide a smoother and more integrated transition between the topics. The book also contains two new chapters. Chapter 15 focuses on the fundamentals of corrosion and stress corrosion cracking, covering forms of corrosion, corrosion thermodynamics, corrosion kinetics, polarization theory, passivity, crevice corrosion, and stress corrosion cracking. Chapter 16 extends this treatment and considers the effects of irradiation on corrosion and environmentally assisted corrosion, including the effects of irradiation on water chemistry and the mechanisms of irradiation-induced stress corrosion cracking. The book maintains the previous style, concepts are developed systematically and quantitatively, supported by worked examples, references for further reading, end-of-chapter problem sets and an online solutions manual. Aimed primarily and students of materials sciences and nuclear engineering, the book will also provide a valuable resource for academic and industrial research professionals.
650
0
$a
Metals
$x
Effect of radiation on.
$3
769451
650
1 4
$a
Engineering.
$3
210888
650
2 4
$a
Nuclear Engineering.
$3
275492
650
2 4
$a
Metallic Materials.
$3
274455
650
2 4
$a
Surface and Interface Science, Thin Films.
$3
489822
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-1-4939-3438-6
950
$a
Engineering (Springer-11647)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000135524
電子館藏
1圖書
電子書
EB TA459 W312 2017
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
http://dx.doi.org/10.1007/978-1-4939-3438-6
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login