Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Smooth Bezier surfaces over unstruct...
~
Bercovier, Michel.
Smooth Bezier surfaces over unstructured quadrilateral meshes
Record Type:
Electronic resources : Monograph/item
Title/Author:
Smooth Bezier surfaces over unstructured quadrilateral meshesby Michel Bercovier, Tanya Matskewich.
Author:
Bercovier, Michel.
other author:
Matskewich, Tanya.
Published:
Cham :Springer International Publishing :2017.
Description:
xx, 192 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Finite element method.
Online resource:
http://dx.doi.org/10.1007/978-3-319-63841-6
ISBN:
9783319638416$q(electronic bk.)
Smooth Bezier surfaces over unstructured quadrilateral meshes
Bercovier, Michel.
Smooth Bezier surfaces over unstructured quadrilateral meshes
[electronic resource] /by Michel Bercovier, Tanya Matskewich. - Cham :Springer International Publishing :2017. - xx, 192 p. :ill., digital ;24 cm. - Lecture notes of the Unione Matematica Italiana,221862-9113 ;. - Lecture notes of the Unione Matematica Italiana ;15..
Introduction -- G1-smooth Surfaces -- C1 smooth surfaces -- MDSs: quadrilateral meshes -- Global MDSs -- MDSs for a smooth boundary -- Computational examples -- Conclusions -- Two-patch geometry and the G1 construction -- Illustrations for the thin plate problem -- Mixed MDSs of degrees 4 and 5 -- Technical lemmas -- Minimisation problems -- G1 is equivalent to C1 -- Bibliography -- References.
Using an elegant mixture of geometry, graph theory and linear analysis, this monograph completely solves a problem lying at the interface of Isogeometric Analysis (IgA) and Finite Element Methods (FEM) The recent explosion of IgA, strongly tying Computer Aided Geometry Design to Analysis, does not easily apply to the rich variety of complex shapes that engineers have to design and analyse. Therefore new developments have studied the extension of IgA to unstructured unions of meshes, similar to those one can find in FEM. The following problem arises: given an unstructured planar quadrilateral mesh, construct a C1-surface, by piecewise Bezier or B-Spline patches defined over this mesh. This problem is solved for C1-surfaces defined over plane bilinear Bezier patches, the corresponding results for B-Splines then being simple consequences. The method can be extended to higher-order quadrilaterals and even to three dimensions, and the most recent developments in this direction are also mentioned here.
ISBN: 9783319638416$q(electronic bk.)
Standard No.: 10.1007/978-3-319-63841-6doiSubjects--Topical Terms:
184533
Finite element method.
LC Class. No.: TA347.F5
Dewey Class. No.: 518.25
Smooth Bezier surfaces over unstructured quadrilateral meshes
LDR
:02454nmm a2200325 a 4500
001
523643
003
DE-He213
005
20180426145700.0
006
m d
007
cr nn 008maaau
008
180628s2017 gw s 0 eng d
020
$a
9783319638416$q(electronic bk.)
020
$a
9783319638409$q(paper)
024
7
$a
10.1007/978-3-319-63841-6
$2
doi
035
$a
978-3-319-63841-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TA347.F5
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT006000
$2
bisacsh
082
0 4
$a
518.25
$2
23
090
$a
TA347.F5
$b
B486 2017
100
1
$a
Bercovier, Michel.
$3
387280
245
1 0
$a
Smooth Bezier surfaces over unstructured quadrilateral meshes
$h
[electronic resource] /
$c
by Michel Bercovier, Tanya Matskewich.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
xx, 192 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes of the Unione Matematica Italiana,
$x
1862-9113 ;
$v
22
505
0
$a
Introduction -- G1-smooth Surfaces -- C1 smooth surfaces -- MDSs: quadrilateral meshes -- Global MDSs -- MDSs for a smooth boundary -- Computational examples -- Conclusions -- Two-patch geometry and the G1 construction -- Illustrations for the thin plate problem -- Mixed MDSs of degrees 4 and 5 -- Technical lemmas -- Minimisation problems -- G1 is equivalent to C1 -- Bibliography -- References.
520
$a
Using an elegant mixture of geometry, graph theory and linear analysis, this monograph completely solves a problem lying at the interface of Isogeometric Analysis (IgA) and Finite Element Methods (FEM) The recent explosion of IgA, strongly tying Computer Aided Geometry Design to Analysis, does not easily apply to the rich variety of complex shapes that engineers have to design and analyse. Therefore new developments have studied the extension of IgA to unstructured unions of meshes, similar to those one can find in FEM. The following problem arises: given an unstructured planar quadrilateral mesh, construct a C1-surface, by piecewise Bezier or B-Spline patches defined over this mesh. This problem is solved for C1-surfaces defined over plane bilinear Bezier patches, the corresponding results for B-Splines then being simple consequences. The method can be extended to higher-order quadrilaterals and even to three dimensions, and the most recent developments in this direction are also mentioned here.
650
0
$a
Finite element method.
$3
184533
650
0
$a
Quadrilaterals.
$3
794980
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Computational Mathematics and Numerical Analysis.
$3
274020
650
2 4
$a
Geometry.
$3
183883
700
1
$a
Matskewich, Tanya.
$3
794979
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Lecture notes of the Unione Matematica Italiana ;
$v
15.
$3
701769
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-63841-6
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000147952
電子館藏
1圖書
電子書
EB TA347.F5 B486 2017
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
http://dx.doi.org/10.1007/978-3-319-63841-6
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login