語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Deep neural networks in a mathematic...
~
Caterini, Anthony L.
Deep neural networks in a mathematical framework
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Deep neural networks in a mathematical frameworkby Anthony L. Caterini, Dong Eui Chang.
作者:
Caterini, Anthony L.
其他作者:
Chang, Dong Eui.
出版者:
Cham :Springer International Publishing :2018.
面頁冊數:
xiii, 84 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Neural networks (Computer science)
電子資源:
http://dx.doi.org/10.1007/978-3-319-75304-1
ISBN:
9783319753041$q(electronic bk.)
Deep neural networks in a mathematical framework
Caterini, Anthony L.
Deep neural networks in a mathematical framework
[electronic resource] /by Anthony L. Caterini, Dong Eui Chang. - Cham :Springer International Publishing :2018. - xiii, 84 p. :ill., digital ;24 cm. - SpringerBriefs in computer science,2191-5768. - SpringerBriefs in computer science..
This SpringerBrief describes how to build a rigorous end-to-end mathematical framework for deep neural networks. The authors provide tools to represent and describe neural networks, casting previous results in the field in a more natural light. In particular, the authors derive gradient descent algorithms in a unified way for several neural network structures, including multilayer perceptrons, convolutional neural networks, deep autoencoders and recurrent neural networks. Furthermore, the authors developed framework is both more concise and mathematically intuitive than previous representations of neural networks. This SpringerBrief is one step towards unlocking the black box of Deep Learning. The authors believe that this framework will help catalyze further discoveries regarding the mathematical properties of neural networks.This SpringerBrief is accessible not only to researchers, professionals and students working and studying in the field of deep learning, but also to those outside of the neutral network community.
ISBN: 9783319753041$q(electronic bk.)
Standard No.: 10.1007/978-3-319-75304-1doiSubjects--Topical Terms:
181982
Neural networks (Computer science)
LC Class. No.: QA76.87
Dewey Class. No.: 006.32
Deep neural networks in a mathematical framework
LDR
:02051nmm a2200325 a 4500
001
533426
003
DE-He213
005
20180322112741.0
006
m d
007
cr nn 008maaau
008
181205s2018 gw s 0 eng d
020
$a
9783319753041$q(electronic bk.)
020
$a
9783319753034$q(paper)
024
7
$a
10.1007/978-3-319-75304-1
$2
doi
035
$a
978-3-319-75304-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.87
072
7
$a
UYQ
$2
bicssc
072
7
$a
TJFM1
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
006.32
$2
23
090
$a
QA76.87
$b
.C359 2018
100
1
$a
Caterini, Anthony L.
$3
809113
245
1 0
$a
Deep neural networks in a mathematical framework
$h
[electronic resource] /
$c
by Anthony L. Caterini, Dong Eui Chang.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
xiii, 84 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in computer science,
$x
2191-5768
520
$a
This SpringerBrief describes how to build a rigorous end-to-end mathematical framework for deep neural networks. The authors provide tools to represent and describe neural networks, casting previous results in the field in a more natural light. In particular, the authors derive gradient descent algorithms in a unified way for several neural network structures, including multilayer perceptrons, convolutional neural networks, deep autoencoders and recurrent neural networks. Furthermore, the authors developed framework is both more concise and mathematically intuitive than previous representations of neural networks. This SpringerBrief is one step towards unlocking the black box of Deep Learning. The authors believe that this framework will help catalyze further discoveries regarding the mathematical properties of neural networks.This SpringerBrief is accessible not only to researchers, professionals and students working and studying in the field of deep learning, but also to those outside of the neutral network community.
650
0
$a
Neural networks (Computer science)
$3
181982
650
1 4
$a
Computer Science.
$3
212513
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
252959
650
2 4
$a
Pattern Recognition.
$3
273706
700
1
$a
Chang, Dong Eui.
$3
719745
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in computer science.
$3
559641
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-75304-1
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000154016
電子館藏
1圖書
電子書
EB QA76.87 .C359 2018 2018
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-75304-1
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入