語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Deep Belief Nets in C++ and CUDA C.V...
~
Masters, Timothy.
Deep Belief Nets in C++ and CUDA C.Volume 1,Restricted Boltzmann machines and supervised feedforward networks
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Deep Belief Nets in C++ and CUDA C.by Timothy Masters.
其他題名:
Restricted Boltzmann machines and supervised feedforward networks
作者:
Masters, Timothy.
出版者:
Berkeley, CA :Apress :2018.
面頁冊數:
ix, 219 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Neural networks (Computer science)
電子資源:
http://dx.doi.org/10.1007/978-1-4842-3591-1
ISBN:
9781484235911$q(electronic bk.)
Deep Belief Nets in C++ and CUDA C.Volume 1,Restricted Boltzmann machines and supervised feedforward networks
Masters, Timothy.
Deep Belief Nets in C++ and CUDA C.
Volume 1,Restricted Boltzmann machines and supervised feedforward networks[electronic resource] /Restricted Boltzmann machines and supervised feedforward networksby Timothy Masters. - Berkeley, CA :Apress :2018. - ix, 219 p. :ill., digital ;24 cm.
1. Introduction -- 2. Supervised Feedforward Networks -- 3. Restricted Boltzmann Machines -- 4. Greedy Training: Generative Samplings -- 5. DEEP Operating Manual.
Discover the essential building blocks of the most common forms of deep belief networks. At each step this book provides intuitive motivation, a summary of the most important equations relevant to the topic, and concludes with highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. The first of three in a series on C++ and CUDA C deep learning and belief nets, Deep Belief Nets in C++ and CUDA C: Volume 1 shows you how the structure of these elegant models is much closer to that of human brains than traditional neural networks; they have a thought process that is capable of learning abstract concepts built from simpler primitives. As such, you'll see that a typical deep belief net can learn to recognize complex patterns by optimizing millions of parameters, yet this model can still be resistant to overfitting. All the routines and algorithms presented in the book are available in the code download, which also contains some libraries of related routines. You will: Employ deep learning using C++ and CUDA C Work with supervised feedforward networks Implement restricted Boltzmann machines Use generative samplings Discover why these are important.
ISBN: 9781484235911$q(electronic bk.)
Standard No.: 10.1007/978-1-4842-3591-1doiSubjects--Topical Terms:
181982
Neural networks (Computer science)
LC Class. No.: QA76.87 / .M368 2018
Dewey Class. No.: 006.32
Deep Belief Nets in C++ and CUDA C.Volume 1,Restricted Boltzmann machines and supervised feedforward networks
LDR
:02557nmm a2200337 a 4500
001
538013
003
DE-He213
005
20180423150045.0
006
m d
007
cr nn 008maaau
008
190116s2018 cau s 0 eng d
020
$a
9781484235911$q(electronic bk.)
020
$a
9781484235904$q(paper)
024
7
$a
10.1007/978-1-4842-3591-1
$2
doi
035
$a
978-1-4842-3591-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.87
$b
.M368 2018
072
7
$a
UMA
$2
bicssc
072
7
$a
COM014000
$2
bisacsh
072
7
$a
COM018000
$2
bisacsh
082
0 4
$a
006.32
$2
23
090
$a
QA76.87
$b
.M423 2018
100
1
$a
Masters, Timothy.
$3
225583
245
1 0
$a
Deep Belief Nets in C++ and CUDA C.
$n
Volume 1,
$p
Restricted Boltzmann machines and supervised feedforward networks
$h
[electronic resource] /
$c
by Timothy Masters.
246
3 0
$a
Restricted Boltzmann machines and supervised feedforward networks
260
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2018.
300
$a
ix, 219 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
1. Introduction -- 2. Supervised Feedforward Networks -- 3. Restricted Boltzmann Machines -- 4. Greedy Training: Generative Samplings -- 5. DEEP Operating Manual.
520
$a
Discover the essential building blocks of the most common forms of deep belief networks. At each step this book provides intuitive motivation, a summary of the most important equations relevant to the topic, and concludes with highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. The first of three in a series on C++ and CUDA C deep learning and belief nets, Deep Belief Nets in C++ and CUDA C: Volume 1 shows you how the structure of these elegant models is much closer to that of human brains than traditional neural networks; they have a thought process that is capable of learning abstract concepts built from simpler primitives. As such, you'll see that a typical deep belief net can learn to recognize complex patterns by optimizing millions of parameters, yet this model can still be resistant to overfitting. All the routines and algorithms presented in the book are available in the code download, which also contains some libraries of related routines. You will: Employ deep learning using C++ and CUDA C Work with supervised feedforward networks Implement restricted Boltzmann machines Use generative samplings Discover why these are important.
650
0
$a
Neural networks (Computer science)
$3
181982
650
0
$a
C++ (Computer program language)
$3
181958
650
1 4
$a
Computer Science.
$3
212513
650
2 4
$a
Computing Methodologies.
$3
274528
650
2 4
$a
Programming Languages, Compilers, Interpreters.
$3
274102
650
2 4
$a
Big Data.
$3
760530
650
2 4
$a
Big Data/Analytics.
$3
742047
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-1-4842-3591-1
950
$a
Professional and Applied Computing (Springer-12059)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000157884
電子館藏
1圖書
電子書
EB QA76.87 M423 2018
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-1-4842-3591-1
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入