Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Data science fundamentals for Python...
~
Paper, David.
Data science fundamentals for Python and MongoDB
Record Type:
Electronic resources : Monograph/item
Title/Author:
Data science fundamentals for Python and MongoDBby David Paper.
Author:
Paper, David.
Published:
Berkeley, CA :Apress :2018.
Description:
xiii, 214 p. :digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Data mining.
Online resource:
http://dx.doi.org/10.1007/978-1-4842-3597-3
ISBN:
9781484235973$q(electronic bk.)
Data science fundamentals for Python and MongoDB
Paper, David.
Data science fundamentals for Python and MongoDB
[electronic resource] /by David Paper. - Berkeley, CA :Apress :2018. - xiii, 214 p. :digital ;24 cm.
1. Introduction -- 2. Monte Carlo Simulation and Density Functions -- 3. Linear Algebra -- 4. Gradient Descent -- 5. Working with Data -- 6. Exploring Data.
Build the foundational data science skills necessary to work with and better understand complex data science algorithms. This example-driven book provides complete Python coding examples to complement and clarify data science concepts, and enrich the learning experience. Coding examples include visualizations whenever appropriate. The book is a necessary precursor to applying and implementing machine learning algorithms. The book is self-contained. All of the math, statistics, stochastic, and programming skills required to master the content are covered. In-depth knowledge of object-oriented programming isn't required because complete examples are provided and explained. Data Science Fundamentals with Python and MongoDB is an excellent starting point for those interested in pursuing a career in data science. Like any science, the fundamentals of data science are a prerequisite to competency. Without proficiency in mathematics, statistics, data manipulation, and coding, the path to success is "rocky" at best. The coding examples in this book are concise, accurate, and complete, and perfectly complement the data science concepts introduced. What You'll Learn: Prepare for a career in data science Work with complex data structures in Python Simulate with Monte Carlo and Stochastic algorithms Apply linear algebra using vectors and matrices Utilize complex algorithms such as gradient descent and principal component analysis Wrangle, cleanse, visualize, and problem solve with data Use MongoDB and JSON to work with data.
ISBN: 9781484235973$q(electronic bk.)
Standard No.: 10.1007/978-1-4842-3597-3doiSubjects--Uniform Titles:
MongoDB.
Subjects--Topical Terms:
184440
Data mining.
LC Class. No.: QA76.9.D343 / P374 2018
Dewey Class. No.: 006.312
Data science fundamentals for Python and MongoDB
LDR
:02587nmm a2200289 a 4500
001
539114
003
DE-He213
005
20181207170921.0
006
m d
007
cr nn 008maaau
008
190122s2018 cau s 0 eng d
020
$a
9781484235973$q(electronic bk.)
020
$a
9781484235966$q(paper)
024
7
$a
10.1007/978-1-4842-3597-3
$2
doi
035
$a
978-1-4842-3597-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D343
$b
P374 2018
082
0 4
$a
006.312
$2
23
090
$a
QA76.9.D343
$b
P214 2018
100
1
$a
Paper, David.
$3
816561
245
1 0
$a
Data science fundamentals for Python and MongoDB
$h
[electronic resource] /
$c
by David Paper.
260
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2018.
300
$a
xiii, 214 p. :
$b
digital ;
$c
24 cm.
505
0
$a
1. Introduction -- 2. Monte Carlo Simulation and Density Functions -- 3. Linear Algebra -- 4. Gradient Descent -- 5. Working with Data -- 6. Exploring Data.
520
$a
Build the foundational data science skills necessary to work with and better understand complex data science algorithms. This example-driven book provides complete Python coding examples to complement and clarify data science concepts, and enrich the learning experience. Coding examples include visualizations whenever appropriate. The book is a necessary precursor to applying and implementing machine learning algorithms. The book is self-contained. All of the math, statistics, stochastic, and programming skills required to master the content are covered. In-depth knowledge of object-oriented programming isn't required because complete examples are provided and explained. Data Science Fundamentals with Python and MongoDB is an excellent starting point for those interested in pursuing a career in data science. Like any science, the fundamentals of data science are a prerequisite to competency. Without proficiency in mathematics, statistics, data manipulation, and coding, the path to success is "rocky" at best. The coding examples in this book are concise, accurate, and complete, and perfectly complement the data science concepts introduced. What You'll Learn: Prepare for a career in data science Work with complex data structures in Python Simulate with Monte Carlo and Stochastic algorithms Apply linear algebra using vectors and matrices Utilize complex algorithms such as gradient descent and principal component analysis Wrangle, cleanse, visualize, and problem solve with data Use MongoDB and JSON to work with data.
630
0 0
$a
MongoDB.
$3
497884
650
0
$a
Data mining.
$3
184440
650
0
$a
Python (Computer program language)
$3
215247
650
1 4
$a
Computer Science.
$3
212513
650
2 4
$a
Big Data.
$3
760530
650
2 4
$a
Python.
$3
763308
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-1-4842-3597-3
950
$a
Professional and Applied Computing (Springer-12059)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000158581
電子館藏
1圖書
電子書
EB QA76.9.D343 P214 2018
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
http://dx.doi.org/10.1007/978-1-4842-3597-3
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login