Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Composing fisher kernels from deep n...
~
Ahmed, Sarah.
Composing fisher kernels from deep neural modelsa practitioner's approach /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Composing fisher kernels from deep neural modelsby Tayyaba Azim, Sarah Ahmed.
Reminder of title:
a practitioner's approach /
Author:
Azim, Tayyaba.
other author:
Ahmed, Sarah.
Published:
Cham :Springer International Publishing :2018.
Description:
xiii, 59 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Kernel functions.
Online resource:
https://doi.org/10.1007/978-3-319-98524-4
ISBN:
9783319985244$q(electronic bk.)
Composing fisher kernels from deep neural modelsa practitioner's approach /
Azim, Tayyaba.
Composing fisher kernels from deep neural models
a practitioner's approach /[electronic resource] :by Tayyaba Azim, Sarah Ahmed. - Cham :Springer International Publishing :2018. - xiii, 59 p. :ill., digital ;24 cm. - SpringerBriefs in computer science,2191-5768. - SpringerBriefs in computer science..
Chapter 1. Kernel Based Learning: A Pragmatic Approach in the Face of New Challenges -- Chapter 2. Fundamentals of Fisher Kernels -- Chapter 3. Training Deep Models and Deriving Fisher Kernels: A Step Wise Approach -- Chapter 4. Large Scale Image Retrieval and Its Challenges -- Chapter 5. Open Source Knowledge Base for Machine Learning Practitioners.
ISBN: 9783319985244$q(electronic bk.)
Standard No.: 10.1007/978-3-319-98524-4doiSubjects--Topical Terms:
214209
Kernel functions.
LC Class. No.: QA353.K47
Dewey Class. No.: 515.7
Composing fisher kernels from deep neural modelsa practitioner's approach /
LDR
:01386nmm a2200325 a 4500
001
543664
003
DE-He213
005
20180829123626.0
006
m d
007
cr nn 008maaau
008
190430s2018 gw s 0 eng d
020
$a
9783319985244$q(electronic bk.)
020
$a
9783319985237$q(paper)
024
7
$a
10.1007/978-3-319-98524-4
$2
doi
035
$a
978-3-319-98524-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA353.K47
072
7
$a
UYQP
$2
bicssc
072
7
$a
COM016000
$2
bisacsh
072
7
$a
UYQP
$2
thema
082
0 4
$a
515.7
$2
23
090
$a
QA353.K47
$b
A995 2018
100
1
$a
Azim, Tayyaba.
$3
821953
245
1 0
$a
Composing fisher kernels from deep neural models
$h
[electronic resource] :
$b
a practitioner's approach /
$c
by Tayyaba Azim, Sarah Ahmed.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
xiii, 59 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in computer science,
$x
2191-5768
505
0
$a
Chapter 1. Kernel Based Learning: A Pragmatic Approach in the Face of New Challenges -- Chapter 2. Fundamentals of Fisher Kernels -- Chapter 3. Training Deep Models and Deriving Fisher Kernels: A Step Wise Approach -- Chapter 4. Large Scale Image Retrieval and Its Challenges -- Chapter 5. Open Source Knowledge Base for Machine Learning Practitioners.
650
0
$a
Kernel functions.
$3
214209
650
0
$a
Support vector machines.
$3
679056
650
1 4
$a
Pattern Recognition.
$3
273706
650
2 4
$a
Signal, Image and Speech Processing.
$3
273768
650
2 4
$a
Information Storage and Retrieval.
$3
274190
650
2 4
$a
Probability and Statistics in Computer Science.
$3
274053
650
2 4
$a
Data Storage Representation.
$3
277024
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
252959
700
1
$a
Ahmed, Sarah.
$3
821954
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in computer science.
$3
559641
856
4 0
$u
https://doi.org/10.1007/978-3-319-98524-4
950
$a
Computer Science (Springer-11645)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000161309
電子館藏
1圖書
電子書
EB QA353.K47 A995 2018 2018
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
https://doi.org/10.1007/978-3-319-98524-4
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login