Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Supervised learning with quantum com...
~
Petruccione, Francesco.
Supervised learning with quantum computers
Record Type:
Electronic resources : Monograph/item
Title/Author:
Supervised learning with quantum computersby Maria Schuld, Francesco Petruccione.
Author:
Schuld, Maria.
other author:
Petruccione, Francesco.
Published:
Cham :Springer International Publishing :2018.
Description:
xiii, 287 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Quantum theory.
Online resource:
https://doi.org/10.1007/978-3-319-96424-9
ISBN:
9783319964249$q(electronic bk.)
Supervised learning with quantum computers
Schuld, Maria.
Supervised learning with quantum computers
[electronic resource] /by Maria Schuld, Francesco Petruccione. - Cham :Springer International Publishing :2018. - xiii, 287 p. :ill., digital ;24 cm. - Quantum science and technology,2364-9054. - Quantum science and technology..
Introduction -- Background -- How quantum computers can classify data -- Organisation of the book -- Machine Learning -- Prediction -- Models -- Training -- Methods in machine learning -- Quantum Information -- Introduction to quantum theory -- Introduction to quantum computing -- An example: The Deutsch-Josza algorithm -- Strategies of information encoding -- Important quantum routines -- Quantum advantages -- Computational complexity of learning -- Sample complexity -- Model complexity -- Information encoding -- Basis encoding -- Amplitude encoding -- Qsample encoding -- Hamiltonian encoding -- Quantum computing for inference -- Linear models -- Kernel methods -- Probabilistic models -- Quantum computing for training -- Quantum blas -- Search and amplitude amplification -- Hybrid training for variational algorithms -- Quantum adiabatic machine learning -- Learning with quantum models -- Quantum extensions of Ising-type models -- Variational classifiers and neural networks -- Other approaches to build quantum models -- Prospects for near-term quantum machine learning -- Small versus big data -- Hybrid versus fully coherent approaches -- Qualitative versus quantitative advantages -- What machine learning can do for quantum computing -- References.
Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ''quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices.
ISBN: 9783319964249$q(electronic bk.)
Standard No.: 10.1007/978-3-319-96424-9doiSubjects--Topical Terms:
199020
Quantum theory.
LC Class. No.: Q325.5 / .S385 2018
Dewey Class. No.: 006.31
Supervised learning with quantum computers
LDR
:03121nmm a2200337 a 4500
001
544090
003
DE-He213
005
20190305131516.0
006
m d
007
cr nn 008maaau
008
190430s2018 gw s 0 eng d
020
$a
9783319964249$q(electronic bk.)
020
$a
9783319964232$q(paper)
024
7
$a
10.1007/978-3-319-96424-9
$2
doi
035
$a
978-3-319-96424-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
$b
.S385 2018
072
7
$a
PHQ
$2
bicssc
072
7
$a
SCI057000
$2
bisacsh
072
7
$a
PHQ
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.S386 2018
100
1
$a
Schuld, Maria.
$3
822586
245
1 0
$a
Supervised learning with quantum computers
$h
[electronic resource] /
$c
by Maria Schuld, Francesco Petruccione.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
xiii, 287 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Quantum science and technology,
$x
2364-9054
505
0
$a
Introduction -- Background -- How quantum computers can classify data -- Organisation of the book -- Machine Learning -- Prediction -- Models -- Training -- Methods in machine learning -- Quantum Information -- Introduction to quantum theory -- Introduction to quantum computing -- An example: The Deutsch-Josza algorithm -- Strategies of information encoding -- Important quantum routines -- Quantum advantages -- Computational complexity of learning -- Sample complexity -- Model complexity -- Information encoding -- Basis encoding -- Amplitude encoding -- Qsample encoding -- Hamiltonian encoding -- Quantum computing for inference -- Linear models -- Kernel methods -- Probabilistic models -- Quantum computing for training -- Quantum blas -- Search and amplitude amplification -- Hybrid training for variational algorithms -- Quantum adiabatic machine learning -- Learning with quantum models -- Quantum extensions of Ising-type models -- Variational classifiers and neural networks -- Other approaches to build quantum models -- Prospects for near-term quantum machine learning -- Small versus big data -- Hybrid versus fully coherent approaches -- Qualitative versus quantitative advantages -- What machine learning can do for quantum computing -- References.
520
$a
Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ''quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices.
650
0
$a
Quantum theory.
$3
199020
650
0
$a
Machine learning.
$3
188639
650
1 4
$a
Quantum Physics.
$3
275010
650
2 4
$a
Quantum Computing.
$3
573152
650
2 4
$a
Pattern Recognition.
$3
273706
650
2 4
$a
Quantum Information Technology, Spintronics.
$3
379903
650
2 4
$a
Numerical and Computational Physics, Simulation.
$3
758154
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
252959
700
1
$a
Petruccione, Francesco.
$3
467638
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Quantum science and technology.
$3
675078
856
4 0
$u
https://doi.org/10.1007/978-3-319-96424-9
950
$a
Physics and Astronomy (Springer-11651)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000161735
電子館藏
1圖書
電子書
EB Q325.5 .S386 2018 2018
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
https://doi.org/10.1007/978-3-319-96424-9
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login