Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Introduction to Riemannian manifolds
~
Lee, John M.
Introduction to Riemannian manifolds
Record Type:
Electronic resources : Monograph/item
Title/Author:
Introduction to Riemannian manifoldsby John M. Lee.
Author:
Lee, John M.
Published:
Cham :Springer International Publishing :2018.
Description:
xiii, 437 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Riemannian manifolds.
Online resource:
https://doi.org/10.1007/978-3-319-91755-9
ISBN:
9783319917559$q(electronic bk.)
Introduction to Riemannian manifolds
Lee, John M.
Introduction to Riemannian manifolds
[electronic resource] /by John M. Lee. - 2nd ed. - Cham :Springer International Publishing :2018. - xiii, 437 p. :ill., digital ;24 cm. - Graduate texts in mathematics,1760072-5285 ;. - Graduate texts in mathematics ;129..
Preface -- 1. What Is Curvature? -- 2. Riemannian Metrics -- 3. Model Riemannian Manifolds -- 4. Connections -- 5. The Levi-Cevita Connection -- 6. Geodesics and Distance -- 7. Curvature -- 8. Riemannian Submanifolds -- 9. The Gauss-Bonnet Theorem -- 10. Jacobi Fields -- 11. Comparison Theory -- 12. Curvature and Topology -- Appendix A: Review of Smooth Manifolds -- Appendix B: Review of Tensors -- Appendix C: Review of Lie Groups -- References -- Notation Index -- Subject Index.
ISBN: 9783319917559$q(electronic bk.)
Standard No.: 10.1007/978-3-319-91755-9doiSubjects--Topical Terms:
190949
Riemannian manifolds.
LC Class. No.: QA649 / .L445 2018
Dewey Class. No.: 516.373
Introduction to Riemannian manifolds
LDR
:01507nmm a2200337 a 4500
001
546826
003
DE-He213
005
20190513110604.0
006
m d
007
cr nn 008maaau
008
190627s2018 gw s 0 eng d
020
$a
9783319917559$q(electronic bk.)
020
$a
9783319917542$q(paper)
024
7
$a
10.1007/978-3-319-91755-9
$2
doi
035
$a
978-3-319-91755-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA649
$b
.L445 2018
072
7
$a
PBMP
$2
bicssc
072
7
$a
MAT012030
$2
bisacsh
072
7
$a
PBMP
$2
thema
082
0 4
$a
516.373
$2
23
090
$a
QA649
$b
.L478 2018
100
1
$a
Lee, John M.
$3
466657
245
1 0
$a
Introduction to Riemannian manifolds
$h
[electronic resource] /
$c
by John M. Lee.
250
$a
2nd ed.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
xiii, 437 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Graduate texts in mathematics,
$x
0072-5285 ;
$v
176
505
0
$a
Preface -- 1. What Is Curvature? -- 2. Riemannian Metrics -- 3. Model Riemannian Manifolds -- 4. Connections -- 5. The Levi-Cevita Connection -- 6. Geodesics and Distance -- 7. Curvature -- 8. Riemannian Submanifolds -- 9. The Gauss-Bonnet Theorem -- 10. Jacobi Fields -- 11. Comparison Theory -- 12. Curvature and Topology -- Appendix A: Review of Smooth Manifolds -- Appendix B: Review of Tensors -- Appendix C: Review of Lie Groups -- References -- Notation Index -- Subject Index.
650
0
$a
Riemannian manifolds.
$3
190949
650
1 4
$a
Differential Geometry.
$3
273785
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Graduate texts in mathematics ;
$v
129.
$3
436082
856
4 0
$u
https://doi.org/10.1007/978-3-319-91755-9
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000163193
電子館藏
1圖書
電子書
EB QA649 .L478 2018 2018
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
https://doi.org/10.1007/978-3-319-91755-9
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login