Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Python for data mining quick syntax ...
~
Porcu, Valentina.
Python for data mining quick syntax reference
Record Type:
Electronic resources : Monograph/item
Title/Author:
Python for data mining quick syntax referenceby Valentina Porcu.
Author:
Porcu, Valentina.
Published:
Berkeley, CA :Apress :2018.
Description:
xv, 260 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Python (Computer program language)
Online resource:
https://doi.org/10.1007/978-1-4842-4113-4
ISBN:
9781484241134$q(electronic bk.)
Python for data mining quick syntax reference
Porcu, Valentina.
Python for data mining quick syntax reference
[electronic resource] /by Valentina Porcu. - Berkeley, CA :Apress :2018. - xv, 260 p. :ill. (some col.), digital ;24 cm.
1. Getting Started -- 2. Introductory Notions -- 3. Basic Objects and Structures -- 4. Functions -- 5. Conditional Instructions and Writing Functions -- 6. Other Basic Concepts -- 7. Importing Files -- 8. pandas -- 9. SciPy and NumPy -- 10. Matplotlib -- 11. scikit-learn.
Learn how to use Python and its structures, how to install Python, and which tools are best suited for data analyst work. This book provides you with a handy reference and tutorial on topics ranging from basic Python concepts through to data mining, manipulating and importing datasets, and data analysis. Python for Data Mining Quick Syntax Reference covers each concept concisely, with many illustrative examples. You'll be introduced to several data mining packages, with examples of how to use each of them. The first part covers core Python including objects, lists, functions, modules, and error handling. The second part covers Python's most important data mining packages: NumPy and SciPy for mathematical functions and random data generation, pandas for dataframe management and data import, Matplotlib for drawing charts, and scikitlearn for machine learning.
ISBN: 9781484241134$q(electronic bk.)
Standard No.: 10.1007/978-1-4842-4113-4doiSubjects--Topical Terms:
215247
Python (Computer program language)
LC Class. No.: QA76.9.D343 / P673 2018
Dewey Class. No.: 006.312
Python for data mining quick syntax reference
LDR
:02139nmm a2200325 a 4500
001
546944
003
DE-He213
005
20190514113100.0
006
m d
007
cr nn 008maaau
008
190627s2018 cau s 0 eng d
020
$a
9781484241134$q(electronic bk.)
020
$a
9781484241127$q(paper)
024
7
$a
10.1007/978-1-4842-4113-4
$2
doi
035
$a
978-1-4842-4113-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D343
$b
P673 2018
072
7
$a
UMX
$2
bicssc
072
7
$a
COM051360
$2
bisacsh
072
7
$a
UMX
$2
thema
082
0 4
$a
006.312
$2
23
090
$a
QA76.9.D343
$b
P834 2018
100
1
$a
Porcu, Valentina.
$3
826058
245
1 0
$a
Python for data mining quick syntax reference
$h
[electronic resource] /
$c
by Valentina Porcu.
260
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2018.
300
$a
xv, 260 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
1. Getting Started -- 2. Introductory Notions -- 3. Basic Objects and Structures -- 4. Functions -- 5. Conditional Instructions and Writing Functions -- 6. Other Basic Concepts -- 7. Importing Files -- 8. pandas -- 9. SciPy and NumPy -- 10. Matplotlib -- 11. scikit-learn.
520
$a
Learn how to use Python and its structures, how to install Python, and which tools are best suited for data analyst work. This book provides you with a handy reference and tutorial on topics ranging from basic Python concepts through to data mining, manipulating and importing datasets, and data analysis. Python for Data Mining Quick Syntax Reference covers each concept concisely, with many illustrative examples. You'll be introduced to several data mining packages, with examples of how to use each of them. The first part covers core Python including objects, lists, functions, modules, and error handling. The second part covers Python's most important data mining packages: NumPy and SciPy for mathematical functions and random data generation, pandas for dataframe management and data import, Matplotlib for drawing charts, and scikitlearn for machine learning.
650
0
$a
Python (Computer program language)
$3
215247
650
0
$a
Data mining.
$3
184440
650
1 4
$a
Python.
$3
763308
650
2 4
$a
Big Data.
$3
760530
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-1-4842-4113-4
950
$a
Professional and Applied Computing (Springer-12059)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000163311
電子館藏
1圖書
電子書
EB QA76.9.D343 P834 2018 2018
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
https://doi.org/10.1007/978-1-4842-4113-4
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login