語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Big data processing using Spark in cloud
~
Mittal, Mamta.
Big data processing using Spark in cloud
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Big data processing using Spark in cloudedited by Mamta Mittal ... [et al.].
其他作者:
Mittal, Mamta.
出版者:
Singapore :Springer Singapore :2019.
面頁冊數:
xiii, 264 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Big data.
電子資源:
http://dx.doi.org/10.1007/978-981-13-0550-4
ISBN:
9789811305504$q(electronic bk.)
Big data processing using Spark in cloud
Big data processing using Spark in cloud
[electronic resource] /edited by Mamta Mittal ... [et al.]. - Singapore :Springer Singapore :2019. - xiii, 264 p. :ill., digital ;24 cm. - Studies in big data,v.432197-6503 ;. - Studies in big data ;v.1..
Concepts of Big Data and Apache Spark -- Big Data Analysis in Cloud and Machine Learning -- Security Issues and Challenges related to Big Data -- Big Data Security Solutions in Cloud -- Data Science and Analytics -- Big Data Technologies -- Data Analysis with Casandra and Spark -- Spin up the Spark Cluster -- Learn Scala -- IO for Spark -- Processing with Spark -- Spark Data Frames and Spark SQL -- Machine Learning and Advanced Analytics -- Parallel Programming with Spark -- Distributed Graph Processing with Spark -- Real Time Processing with Spark -- Spark in Real World -- Case Studies.
The book describes the emergence of big data technologies and the role of Spark in the entire big data stack. It compares Spark and Hadoop and identifies the shortcomings of Hadoop that have been overcome by Spark. The book mainly focuses on the in-depth architecture of Spark and our understanding of Spark RDDs and how RDD complements big data's immutable nature, and solves it with lazy evaluation, cacheable and type inference. It also addresses advanced topics in Spark, starting with the basics of Scala and the core Spark framework, and exploring Spark data frames, machine learning using Mllib, graph analytics using Graph X and real-time processing with Apache Kafka, AWS Kenisis, and Azure Event Hub. It then goes on to investigate Spark using PySpark and R. Focusing on the current big data stack, the book examines the interaction with current big data tools, with Spark being the core processing layer for all types of data. The book is intended for data engineers and scientists working on massive datasets and big data technologies in the cloud. In addition to industry professionals, it is helpful for aspiring data processing professionals and students working in big data processing and cloud computing environments.
ISBN: 9789811305504$q(electronic bk.)
Standard No.: 10.1007/978-981-13-0550-4doiSubjects--Topical Terms:
609582
Big data.
LC Class. No.: QA76.9.B45 / B543 2019
Dewey Class. No.: 005.7
Big data processing using Spark in cloud
LDR
:02766nmm a2200301 a 4500
001
550328
003
DE-He213
005
20180616072255.0
006
m d
007
cr nn 008maaau
008
191004s2019 si s 0 eng d
020
$a
9789811305504$q(electronic bk.)
020
$a
9789811305498$q(paper)
024
7
$a
10.1007/978-981-13-0550-4
$2
doi
035
$a
978-981-13-0550-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.B45
$b
B543 2019
082
0 4
$a
005.7
$2
23
090
$a
QA76.9.B45
$b
B592 2019
245
0 0
$a
Big data processing using Spark in cloud
$h
[electronic resource] /
$c
edited by Mamta Mittal ... [et al.].
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2019.
300
$a
xiii, 264 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Studies in big data,
$x
2197-6503 ;
$v
v.43
505
0
$a
Concepts of Big Data and Apache Spark -- Big Data Analysis in Cloud and Machine Learning -- Security Issues and Challenges related to Big Data -- Big Data Security Solutions in Cloud -- Data Science and Analytics -- Big Data Technologies -- Data Analysis with Casandra and Spark -- Spin up the Spark Cluster -- Learn Scala -- IO for Spark -- Processing with Spark -- Spark Data Frames and Spark SQL -- Machine Learning and Advanced Analytics -- Parallel Programming with Spark -- Distributed Graph Processing with Spark -- Real Time Processing with Spark -- Spark in Real World -- Case Studies.
520
$a
The book describes the emergence of big data technologies and the role of Spark in the entire big data stack. It compares Spark and Hadoop and identifies the shortcomings of Hadoop that have been overcome by Spark. The book mainly focuses on the in-depth architecture of Spark and our understanding of Spark RDDs and how RDD complements big data's immutable nature, and solves it with lazy evaluation, cacheable and type inference. It also addresses advanced topics in Spark, starting with the basics of Scala and the core Spark framework, and exploring Spark data frames, machine learning using Mllib, graph analytics using Graph X and real-time processing with Apache Kafka, AWS Kenisis, and Azure Event Hub. It then goes on to investigate Spark using PySpark and R. Focusing on the current big data stack, the book examines the interaction with current big data tools, with Spark being the core processing layer for all types of data. The book is intended for data engineers and scientists working on massive datasets and big data technologies in the cloud. In addition to industry professionals, it is helpful for aspiring data processing professionals and students working in big data processing and cloud computing environments.
650
0
$a
Big data.
$3
609582
650
0
$a
SPARK (Computer program language)
$3
803939
650
0
$a
Cloud computing.
$3
378527
650
0
$a
Electronic data processing
$x
Distributed processing.
$3
182427
650
1 4
$a
Computer Science.
$3
212513
650
2 4
$a
Big Data.
$3
760530
650
2 4
$a
Systems and Data Security.
$3
274481
650
2 4
$a
Big Data/Analytics.
$3
742047
700
1
$a
Mittal, Mamta.
$3
830121
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Studies in big data ;
$v
v.1.
$3
675357
856
4 0
$u
http://dx.doi.org/10.1007/978-981-13-0550-4
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000164396
電子館藏
1圖書
電子書
EB QA76.9.B45 B592 2019 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-981-13-0550-4
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入