Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Linear and quasilinear parabolic pro...
~
Amann, Herbert.
Linear and quasilinear parabolic problems.Volume II,Function spaces
Record Type:
Electronic resources : Monograph/item
Title/Author:
Linear and quasilinear parabolic problems.by Herbert Amann.
remainder title:
Function spaces
Author:
Amann, Herbert.
Published:
Cham :Springer International Publishing :2019.
Description:
xvi, 462 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Differential equations, Parabolic.
Online resource:
https://doi.org/10.1007/978-3-030-11763-4
ISBN:
9783030117634$q(electronic bk.)
Linear and quasilinear parabolic problems.Volume II,Function spaces
Amann, Herbert.
Linear and quasilinear parabolic problems.
Volume II,Function spaces[electronic resource] /Function spacesby Herbert Amann. - Cham :Springer International Publishing :2019. - xvi, 462 p. :ill., digital ;24 cm. - Monographs in mathematics,v.1061017-0480 ;. - Monographs in mathematics ;v.102..
Restriction-Extension Pairs -- Sequence Spaces -- Anisotropy -- Classical Spaces -- Besov Spaces -- Intrinsic Norms, Slobodeckii and Holder Spaces -- Bessel Potential Spaces -- Triebel-Lizorkin Spaces -- Point-Wise Multiplications -- Compactness -- Parameter-Dependent Spaces.
This volume discusses an in-depth theory of function spaces in an Euclidean setting, including several new features, not previously covered in the literature. In particular, it develops a unified theory of anisotropic Besov and Bessel potential spaces on Euclidean corners, with infinite-dimensional Banach spaces as targets. It especially highlights the most important subclasses of Besov spaces, namely Slobodeckii and Holder spaces. In this case, no restrictions are imposed on the target spaces, except for reflexivity assumptions in duality results. In this general setting, the author proves sharp embedding, interpolation, and trace theorems, point-wise multiplier results, as well as Gagliardo-Nirenberg estimates and generalizations of Aubin-Lions compactness theorems. The results presented pave the way for new applications in situations where infinite-dimensional target spaces are relevant - in the realm of stochastic differential equations, for example.
ISBN: 9783030117634$q(electronic bk.)
Standard No.: 10.1007/978-3-030-11763-4doiSubjects--Topical Terms:
247280
Differential equations, Parabolic.
LC Class. No.: QA377 / .A43 2019
Dewey Class. No.: 515.3534
Linear and quasilinear parabolic problems.Volume II,Function spaces
LDR
:02362nmm a2200361 a 4500
001
556869
003
DE-He213
005
20190416102421.0
006
m d
007
cr nn 008maaau
008
191127s2019 gw s 0 eng d
020
$a
9783030117634$q(electronic bk.)
020
$a
9783030117627$q(paper)
023
2 6
$a
nam a2200349 a 4500
024
7
$a
10.1007/978-3-030-11763-4
$2
doi
035
$a
978-3-030-11763-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA377
$b
.A43 2019
072
7
$a
PBKF
$2
bicssc
072
7
$a
MAT037000
$2
bisacsh
072
7
$a
PBKF
$2
thema
082
0 4
$a
515.3534
$2
23
090
$a
QA377
$b
.A484 2019
100
1
$a
Amann, Herbert.
$3
256521
245
1 0
$a
Linear and quasilinear parabolic problems.
$n
Volume II,
$p
Function spaces
$h
[electronic resource] /
$c
by Herbert Amann.
246
3 0
$a
Function spaces
260
$a
Cham :
$c
2019.
$b
Springer International Publishing :
$b
Imprint: Birkhauser,
300
$a
xvi, 462 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Monographs in mathematics,
$x
1017-0480 ;
$v
v.106
505
0
$a
Restriction-Extension Pairs -- Sequence Spaces -- Anisotropy -- Classical Spaces -- Besov Spaces -- Intrinsic Norms, Slobodeckii and Holder Spaces -- Bessel Potential Spaces -- Triebel-Lizorkin Spaces -- Point-Wise Multiplications -- Compactness -- Parameter-Dependent Spaces.
520
$a
This volume discusses an in-depth theory of function spaces in an Euclidean setting, including several new features, not previously covered in the literature. In particular, it develops a unified theory of anisotropic Besov and Bessel potential spaces on Euclidean corners, with infinite-dimensional Banach spaces as targets. It especially highlights the most important subclasses of Besov spaces, namely Slobodeckii and Holder spaces. In this case, no restrictions are imposed on the target spaces, except for reflexivity assumptions in duality results. In this general setting, the author proves sharp embedding, interpolation, and trace theorems, point-wise multiplier results, as well as Gagliardo-Nirenberg estimates and generalizations of Aubin-Lions compactness theorems. The results presented pave the way for new applications in situations where infinite-dimensional target spaces are relevant - in the realm of stochastic differential equations, for example.
650
0
$a
Differential equations, Parabolic.
$3
247280
650
1 4
$a
Functional Analysis.
$3
274845
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Monographs in mathematics ;
$v
v.102.
$3
558258
856
4 0
$u
https://doi.org/10.1007/978-3-030-11763-4
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000169692
電子館藏
1圖書
電子書
EB QA377 .A484 2019 2019
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
https://doi.org/10.1007/978-3-030-11763-4
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login