語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Deep reinforcement learningfrontiers...
~
Sewak, Mohit.
Deep reinforcement learningfrontiers of artificial intelligence /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Deep reinforcement learningby Mohit Sewak.
其他題名:
frontiers of artificial intelligence /
作者:
Sewak, Mohit.
出版者:
Singapore :Springer Singapore :2019.
面頁冊數:
xvii, 203 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Reinforcement learning.
電子資源:
https://doi.org/10.1007/978-981-13-8285-7
ISBN:
9789811382857$q(electronic bk.)
Deep reinforcement learningfrontiers of artificial intelligence /
Sewak, Mohit.
Deep reinforcement learning
frontiers of artificial intelligence /[electronic resource] :by Mohit Sewak. - Singapore :Springer Singapore :2019. - xvii, 203 p. :ill. (some col.), digital ;24 cm.
Introduction to Reinforcement Learning -- Mathematical and Algorithmic understanding of Reinforcement Learning -- Coding the Environment and MDP Solution -- Temporal Difference Learning, SARSA, and Q Learning -- Q Learning in Code -- Introduction to Deep Learning -- Implementation Resources -- Deep Q Network (DQN), Double DQN and Dueling DQN -- Double DQN in Code -- Policy-Based Reinforcement Learning Approaches -- Actor-Critic Models & the A3C -- A3C in Code -- Deterministic Policy Gradient and the DDPG -- DDPG in Code.
This book starts by presenting the basics of reinforcement learning using highly intuitive and easy-to-understand examples and applications, and then introduces the cutting-edge research advances that make reinforcement learning capable of out-performing most state-of-art systems, and even humans in a number of applications. The book not only equips readers with an understanding of multiple advanced and innovative algorithms, but also prepares them to implement systems such as those created by Google Deep Mind in actual code. This book is intended for readers who want to both understand and apply advanced concepts in a field that combines the best of two worlds - deep learning and reinforcement learning - to tap the potential of 'advanced artificial intelligence' for creating real-world applications and game-winning algorithms.
ISBN: 9789811382857$q(electronic bk.)
Standard No.: 10.1007/978-981-13-8285-7doiSubjects--Topical Terms:
349131
Reinforcement learning.
LC Class. No.: Q325.6 / .S49 2019
Dewey Class. No.: 005.11
Deep reinforcement learningfrontiers of artificial intelligence /
LDR
:02350nmm a2200325 a 4500
001
562691
003
DE-He213
005
20190627193138.0
006
m d
007
cr nn 008maaau
008
200227s2019 si s 0 eng d
020
$a
9789811382857$q(electronic bk.)
020
$a
9789811382840$q(paper)
024
7
$a
10.1007/978-981-13-8285-7
$2
doi
035
$a
978-981-13-8285-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.6
$b
.S49 2019
072
7
$a
UM
$2
bicssc
072
7
$a
COM051000
$2
bisacsh
072
7
$a
UM
$2
thema
082
0 4
$a
005.11
$2
23
090
$a
Q325.6
$b
.S512 2019
100
1
$a
Sewak, Mohit.
$3
847925
245
1 0
$a
Deep reinforcement learning
$h
[electronic resource] :
$b
frontiers of artificial intelligence /
$c
by Mohit Sewak.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2019.
300
$a
xvii, 203 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Introduction to Reinforcement Learning -- Mathematical and Algorithmic understanding of Reinforcement Learning -- Coding the Environment and MDP Solution -- Temporal Difference Learning, SARSA, and Q Learning -- Q Learning in Code -- Introduction to Deep Learning -- Implementation Resources -- Deep Q Network (DQN), Double DQN and Dueling DQN -- Double DQN in Code -- Policy-Based Reinforcement Learning Approaches -- Actor-Critic Models & the A3C -- A3C in Code -- Deterministic Policy Gradient and the DDPG -- DDPG in Code.
520
$a
This book starts by presenting the basics of reinforcement learning using highly intuitive and easy-to-understand examples and applications, and then introduces the cutting-edge research advances that make reinforcement learning capable of out-performing most state-of-art systems, and even humans in a number of applications. The book not only equips readers with an understanding of multiple advanced and innovative algorithms, but also prepares them to implement systems such as those created by Google Deep Mind in actual code. This book is intended for readers who want to both understand and apply advanced concepts in a field that combines the best of two worlds - deep learning and reinforcement learning - to tap the potential of 'advanced artificial intelligence' for creating real-world applications and game-winning algorithms.
650
0
$a
Reinforcement learning.
$3
349131
650
1 4
$a
Programming Techniques.
$3
274470
650
2 4
$a
Artificial Intelligence.
$3
212515
650
2 4
$a
Algorithm Analysis and Problem Complexity.
$3
273702
650
2 4
$a
Cryptology.
$3
825728
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-981-13-8285-7
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000174260
電子館藏
1圖書
電子書
EB Q325.6 .S512 2019 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-981-13-8285-7
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入