語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Effective statistical learning metho...
~
Denuit, Michel.
Effective statistical learning methods for actuaries.III,Neural networks and extensions
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Effective statistical learning methods for actuaries.by Michel Denuit, Donatien Hainaut, Julien Trufin.
作者:
Denuit, Michel.
其他作者:
Hainaut, Donatien.
出版者:
Cham :Springer International Publishing :2019.
面頁冊數:
xiii, 250 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Actuarial science.
電子資源:
https://doi.org/10.1007/978-3-030-25827-6
ISBN:
9783030258276$q(electronic bk.)
Effective statistical learning methods for actuaries.III,Neural networks and extensions
Denuit, Michel.
Effective statistical learning methods for actuaries.
III,Neural networks and extensions[electronic resource] /by Michel Denuit, Donatien Hainaut, Julien Trufin. - Cham :Springer International Publishing :2019. - xiii, 250 p. :ill. (some col.), digital ;24 cm. - Springer actuarial lecture notes,2523-3289. - Springer actuarial lecture notes..
Preface. - Feed-forward Neural Networks. - Byesian Neural Networks and GLM. - Deep Neural Networks -- Dimension-Reduction with Forward Neural Nets Applied to Mortality. - Self-organizing Maps and k-means clusterin in non Life Insurance. - Ensemble of Neural Networks -- Gradient Boosting with Neural Networks. - Time Series Modelling with Neural Networks -- References.
Artificial intelligence and neural networks offer a powerful alternative to statistical methods for analyzing data. This book reviews some of the most recent developments in neural networks, with a focus on applications in actuarial sciences and finance. The third volume of the trilogy simultaneously introduces the relevant tools for developing and analyzing neural networks, in a style that is mathematically rigorous and yet accessible. The authors proceed by successive generalizations, requiring of the reader only a basic knowledge of statistics. Various topics are covered from feed-forward networks to deep learning, such as Bayesian learning, boosting methods and Long Short Term Memory models. All methods are applied to claims, mortality or time-series forecasting. This book is written for masters students in the actuarial sciences and for actuaries wishing to update their skills in machine learning.
ISBN: 9783030258276$q(electronic bk.)
Standard No.: 10.1007/978-3-030-25827-6doiSubjects--Topical Terms:
603592
Actuarial science.
LC Class. No.: HG8781 / .D468 2019
Dewey Class. No.: 368.01
Effective statistical learning methods for actuaries.III,Neural networks and extensions
LDR
:02399nmm a2200337 a 4500
001
568146
003
DE-He213
005
20200131091017.0
006
m d
007
cr nn 008maaau
008
200611s2019 sz s 0 eng d
020
$a
9783030258276$q(electronic bk.)
020
$a
9783030258269$q(paper)
024
7
$a
10.1007/978-3-030-25827-6
$2
doi
035
$a
978-3-030-25827-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
HG8781
$b
.D468 2019
072
7
$a
KFFN
$2
bicssc
072
7
$a
BUS033000
$2
bisacsh
072
7
$a
KFFN
$2
thema
082
0 4
$a
368.01
$2
23
090
$a
HG8781
$b
.D415 2019
100
1
$a
Denuit, Michel.
$3
853874
245
1 0
$a
Effective statistical learning methods for actuaries.
$n
III,
$p
Neural networks and extensions
$h
[electronic resource] /
$c
by Michel Denuit, Donatien Hainaut, Julien Trufin.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
xiii, 250 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Springer actuarial lecture notes,
$x
2523-3289
505
0
$a
Preface. - Feed-forward Neural Networks. - Byesian Neural Networks and GLM. - Deep Neural Networks -- Dimension-Reduction with Forward Neural Nets Applied to Mortality. - Self-organizing Maps and k-means clusterin in non Life Insurance. - Ensemble of Neural Networks -- Gradient Boosting with Neural Networks. - Time Series Modelling with Neural Networks -- References.
520
$a
Artificial intelligence and neural networks offer a powerful alternative to statistical methods for analyzing data. This book reviews some of the most recent developments in neural networks, with a focus on applications in actuarial sciences and finance. The third volume of the trilogy simultaneously introduces the relevant tools for developing and analyzing neural networks, in a style that is mathematically rigorous and yet accessible. The authors proceed by successive generalizations, requiring of the reader only a basic knowledge of statistics. Various topics are covered from feed-forward networks to deep learning, such as Bayesian learning, boosting methods and Long Short Term Memory models. All methods are applied to claims, mortality or time-series forecasting. This book is written for masters students in the actuarial sciences and for actuaries wishing to update their skills in machine learning.
650
0
$a
Actuarial science.
$3
603592
650
0
$a
Insurance
$x
Statistical methods.
$3
183041
650
0
$a
Neural networks (Computer science)
$3
181982
650
1 4
$a
Actuarial Sciences.
$3
569133
650
2 4
$a
Statistics for Business, Management, Economics, Finance, Insurance.
$3
825914
650
2 4
$a
Mathematical Models of Cognitive Processes and Neural Networks.
$3
567118
700
1
$a
Hainaut, Donatien.
$3
853875
700
1
$a
Trufin, Julien.
$3
853876
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Springer actuarial lecture notes.
$3
853877
856
4 0
$u
https://doi.org/10.1007/978-3-030-25827-6
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000176791
電子館藏
1圖書
電子書
EB HG8781 .D415 2019 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-25827-6
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入