Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Intelligent asset management
~
Cambria, Erik.
Intelligent asset management
Record Type:
Electronic resources : Monograph/item
Title/Author:
Intelligent asset managementby Frank Xing, Erik Cambria, Roy Welsch.
Author:
Xing, Frank.
other author:
Cambria, Erik.
Published:
Cham :Springer International Publishing :2019.
Description:
xxii, 149 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Asset allocation.
Online resource:
https://doi.org/10.1007/978-3-030-30263-4
ISBN:
9783030302634$q(electronic bk.)
Intelligent asset management
Xing, Frank.
Intelligent asset management
[electronic resource] /by Frank Xing, Erik Cambria, Roy Welsch. - Cham :Springer International Publishing :2019. - xxii, 149 p. :ill. (some col.), digital ;24 cm. - Socio-affective computing,v.92509-5706 ;. - Socio-affective computing ;v.1..
Chapter 1. Introduction -- Chapter 2 -- Revisiting the Literature -- Chapter 3. Theoretical Underpinnings on Text Mining -- Chapter 4. Computational Semantics for Asset Correlations -- Chapter 5. Sentiment Analysis for View Modeling -- Chapter 6. Storage and Update of Domain Knowledge -- Chapter 7. Dialog Systems and Robo-advisory -- Chapter 8. Concluding Remarks -- Appendix -- Index.
This book presents a systematic application of recent advances in artificial intelligence (AI) to the problem of asset management. While natural language processing and text mining techniques, such as semantic representation, sentiment analysis, entity extraction, commonsense reasoning, and fact checking have been evolving for decades, finance theories have not yet fully considered and adapted to these ideas. In this unique, readable volume, the authors discuss integrating textual knowledge and market sentiment step-by-step, offering readers new insights into the most popular portfolio optimization theories: the Markowitz model and the Black-Litterman model. The authors also provide valuable visions of how AI technology-based infrastructures could cut the cost of and automate wealth management procedures. This inspiring book is a must-read for researchers and bankers interested in cutting-edge AI applications in finance.
ISBN: 9783030302634$q(electronic bk.)
Standard No.: 10.1007/978-3-030-30263-4doiSubjects--Topical Terms:
209567
Asset allocation.
LC Class. No.: HG4529.5 / .X564 2019
Dewey Class. No.: 332.6
Intelligent asset management
LDR
:02366nmm a2200337 a 4500
001
569216
003
DE-He213
005
20200205100910.0
006
m d
007
cr nn 008maaau
008
200723s2019 sz s 0 eng d
020
$a
9783030302634$q(electronic bk.)
020
$a
9783030302627$q(paper)
024
7
$a
10.1007/978-3-030-30263-4
$2
doi
035
$a
978-3-030-30263-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
HG4529.5
$b
.X564 2019
072
7
$a
MBGR
$2
bicssc
072
7
$a
MED000000
$2
bisacsh
072
7
$a
MBGR
$2
thema
082
0 4
$a
332.6
$2
23
090
$a
HG4529.5
$b
.X6 2019
100
1
$a
Xing, Frank.
$3
855123
245
1 0
$a
Intelligent asset management
$h
[electronic resource] /
$c
by Frank Xing, Erik Cambria, Roy Welsch.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
xxii, 149 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Socio-affective computing,
$x
2509-5706 ;
$v
v.9
505
0
$a
Chapter 1. Introduction -- Chapter 2 -- Revisiting the Literature -- Chapter 3. Theoretical Underpinnings on Text Mining -- Chapter 4. Computational Semantics for Asset Correlations -- Chapter 5. Sentiment Analysis for View Modeling -- Chapter 6. Storage and Update of Domain Knowledge -- Chapter 7. Dialog Systems and Robo-advisory -- Chapter 8. Concluding Remarks -- Appendix -- Index.
520
$a
This book presents a systematic application of recent advances in artificial intelligence (AI) to the problem of asset management. While natural language processing and text mining techniques, such as semantic representation, sentiment analysis, entity extraction, commonsense reasoning, and fact checking have been evolving for decades, finance theories have not yet fully considered and adapted to these ideas. In this unique, readable volume, the authors discuss integrating textual knowledge and market sentiment step-by-step, offering readers new insights into the most popular portfolio optimization theories: the Markowitz model and the Black-Litterman model. The authors also provide valuable visions of how AI technology-based infrastructures could cut the cost of and automate wealth management procedures. This inspiring book is a must-read for researchers and bankers interested in cutting-edge AI applications in finance.
650
0
$a
Asset allocation.
$3
209567
650
0
$a
Finance
$x
Technological innovations.
$3
775508
650
0
$a
Artificial intelligence.
$3
194058
650
1 4
$a
Biomedicine, general.
$3
853300
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
275288
650
2 4
$a
Artificial Intelligence.
$3
212515
650
2 4
$a
e-Business/e-Commerce.
$3
719318
650
2 4
$a
e-Commerce/e-business.
$3
348145
700
1
$a
Cambria, Erik.
$3
568891
700
1
$a
Welsch, Roy.
$3
855124
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Socio-affective computing ;
$v
v.1.
$3
732529
856
4 0
$u
https://doi.org/10.1007/978-3-030-30263-4
950
$a
Biomedical and Life Sciences (Springer-11642)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000177278
電子館藏
1圖書
電子書
EB HG4529.5 .X6 2019 2019
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
https://doi.org/10.1007/978-3-030-30263-4
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login