Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Source separation and machine learning /
~
Chien, Jen-Tzung,
Source separation and machine learning /
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Source separation and machine learning /Jen-Tzung Chien.
Author:
Chien, Jen-Tzung,
Description:
xxx, 353 pages :illustrations ;24 cm.
Subject:
Blind source separation.
ISBN:
9780128177969
Source separation and machine learning /
Chien, Jen-Tzung,
Source separation and machine learning /
Jen-Tzung Chien. - xxx, 353 pages :illustrations ;24 cm.
Includes bibliographical references and index.
Source Separation and Machine Learning presents the fundamentals in adaptive learning algorithms for Blind Source Separation (BSS) and emphasizes the importance of machine learning perspectives. It illustrates how BSS problems are tackled through adaptive learning algorithms and model-based approaches using the latest information on mixture signals to build a BSS model that is seen as a statistical model for a whole system. Looking at different models, including independent component analysis (ICA), nonnegative matrix factorization (NMF), nonnegative tensor factorization (NTF), and deep neural network (DNN), the book addresses how they have evolved to deal with multichannel and single-channel source separation.
ISBN: 9780128177969$99.95
Nat. Bib. Agency Control No.: cam 2200265 i 4500Subjects--Topical Terms:
340034
Blind source separation.
LC Class. No.: TK5102.9 / .C45 2019
Source separation and machine learning /
LDR
:01638nam a2200277 a 4500
001
570462
003
VRT
005
20190920120000.0
008
200824t20192019enka b 001 0 eng d
016
0 4
$a
cam 2200265 i 4500
020
$a
9780128177969
$q
(paperback) :
$c
$99.95
020
$a
0128177969
$q
(paperback)
020
$z
9780128045770
$q
(ebook)
035
$a
(OCoLC)on1039335017
035
$a
vtls002226626
040
$a
YDX
$b
eng
$e
rda
$c
YDX
$d
UKMGB
$d
OCLCO
$d
OCLCQ
$d
OCLCF
$d
RCE
$d
YDXIT
$d
TKU
042
$a
nbic
050
4
$a
TK5102.9
$b
.C45 2019
100
1
$a
Chien, Jen-Tzung,
$e
author.
$3
857087
245
1 0
$a
Source separation and machine learning /
$c
Jen-Tzung Chien.
264
1
$a
London, United Kingdom :
$b
Academic Press,
$c
[2019]
264
4
$c
©2019.
300
$a
xxx, 353 pages :
$b
illustrations ;
$c
24 cm.
336
$a
text
$b
txt
$2
rdacontent.
337
$a
unmediated
$b
n
$2
rdamedia.
338
$a
volume
$b
nc
$2
rdacarrier.
504
$a
Includes bibliographical references and index.
520
$a
Source Separation and Machine Learning presents the fundamentals in adaptive learning algorithms for Blind Source Separation (BSS) and emphasizes the importance of machine learning perspectives. It illustrates how BSS problems are tackled through adaptive learning algorithms and model-based approaches using the latest information on mixture signals to build a BSS model that is seen as a statistical model for a whole system. Looking at different models, including independent component analysis (ICA), nonnegative matrix factorization (NMF), nonnegative tensor factorization (NTF), and deep neural network (DNN), the book addresses how they have evolved to deal with multichannel and single-channel source separation.
650
0
$a
Blind source separation.
$3
340034
650
0
$a
Machine learning.
$3
188639
based on 0 review(s)
ALL
西方語文圖書區(四樓)
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
320000724270
西方語文圖書區(四樓)
1圖書
一般圖書
TK5102.9 C533 2019
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login