Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
An introduction to the topological d...
~
Novotny, Antonio Andre.
An introduction to the topological derivative method
Record Type:
Electronic resources : Monograph/item
Title/Author:
An introduction to the topological derivative methodby Antonio Andre Novotny, Jan Sokolowski.
Author:
Novotny, Antonio Andre.
other author:
Sokolowski, Jan.
Published:
Cham :Springer International Publishing :2020.
Description:
x, 114 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Mathematical optimization.
Online resource:
https://doi.org/10.1007/978-3-030-36915-6
ISBN:
9783030369156$q(electronic bk.)
An introduction to the topological derivative method
Novotny, Antonio Andre.
An introduction to the topological derivative method
[electronic resource] /by Antonio Andre Novotny, Jan Sokolowski. - Cham :Springer International Publishing :2020. - x, 114 p. :ill. (some col.), digital ;24 cm. - SpringerBriefs in mathematics,2191-8198. - SpringerBriefs in mathematics..
Introduction -- Singular Domain Perturbation -- Regular Domain Perturbation -- Domain Truncation Method -- Topology Design Optimization -- Appendix: Tensor Calculus -- References -- Index.
This book presents the topological derivative method through selected examples, using a direct approach based on calculus of variations combined with compound asymptotic analysis. This new concept in shape optimization has applications in many different fields such as topology optimization, inverse problems, imaging processing, multi-scale material design and mechanical modeling including damage and fracture evolution phenomena. In particular, the topological derivative is used here in numerical methods of shape optimization, with applications in the context of compliance structural topology optimization and topology design of compliant mechanisms. Some exercises are offered at the end of each chapter, helping the reader to better understand the involved concepts.
ISBN: 9783030369156$q(electronic bk.)
Standard No.: 10.1007/978-3-030-36915-6doiSubjects--Topical Terms:
183292
Mathematical optimization.
LC Class. No.: QA402.5 / .N686 2020
Dewey Class. No.: 515.64
An introduction to the topological derivative method
LDR
:02052nmm a2200349 a 4500
001
573670
003
DE-He213
005
20200624172118.0
006
m d
007
cr nn 008maaau
008
200928s2020 sz s 0 eng d
020
$a
9783030369156$q(electronic bk.)
020
$a
9783030369149$q(paper)
024
7
$a
10.1007/978-3-030-36915-6
$2
doi
035
$a
978-3-030-36915-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA402.5
$b
.N686 2020
072
7
$a
PBKQ
$2
bicssc
072
7
$a
MAT005000
$2
bisacsh
072
7
$a
PBKQ
$2
thema
072
7
$a
PBU
$2
thema
082
0 4
$a
515.64
$2
23
090
$a
QA402.5
$b
.N945 2020
100
1
$a
Novotny, Antonio Andre.
$3
837918
245
1 3
$a
An introduction to the topological derivative method
$h
[electronic resource] /
$c
by Antonio Andre Novotny, Jan Sokolowski.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
x, 114 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematics,
$x
2191-8198
505
0
$a
Introduction -- Singular Domain Perturbation -- Regular Domain Perturbation -- Domain Truncation Method -- Topology Design Optimization -- Appendix: Tensor Calculus -- References -- Index.
520
$a
This book presents the topological derivative method through selected examples, using a direct approach based on calculus of variations combined with compound asymptotic analysis. This new concept in shape optimization has applications in many different fields such as topology optimization, inverse problems, imaging processing, multi-scale material design and mechanical modeling including damage and fracture evolution phenomena. In particular, the topological derivative is used here in numerical methods of shape optimization, with applications in the context of compliance structural topology optimization and topology design of compliant mechanisms. Some exercises are offered at the end of each chapter, helping the reader to better understand the involved concepts.
650
0
$a
Mathematical optimization.
$3
183292
650
1 4
$a
Calculus of Variations and Optimal Control; Optimization.
$3
274198
650
2 4
$a
Partial Differential Equations.
$3
274075
650
2 4
$a
Classical Mechanics.
$3
769955
700
1
$a
Sokolowski, Jan.
$3
837919
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in mathematics.
$3
558795
856
4 0
$u
https://doi.org/10.1007/978-3-030-36915-6
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000180030
電子館藏
1圖書
電子書
EB QA402.5 .N945 2020 2020
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
https://doi.org/10.1007/978-3-030-36915-6
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login