Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Industrial machine learningusing art...
~
SpringerLink (Online service)
Industrial machine learningusing artificial intelligence as a transformational disruptor /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Industrial machine learningby Andreas Francois Vermeulen.
Reminder of title:
using artificial intelligence as a transformational disruptor /
Author:
Vermeulen, Andreas Francois.
Published:
Berkeley, CA :Apress :2020.
Description:
xxiii, 637 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Machine learning.
Online resource:
https://doi.org/10.1007/978-1-4842-5316-8
ISBN:
9781484253168$q(electronic bk.)
Industrial machine learningusing artificial intelligence as a transformational disruptor /
Vermeulen, Andreas Francois.
Industrial machine learning
using artificial intelligence as a transformational disruptor /[electronic resource] :by Andreas Francois Vermeulen. - Berkeley, CA :Apress :2020. - xxiii, 637 p. :ill., digital ;24 cm.
Chapter 1: Introduction -- Chapter 2: Background Knowledge -- Chapter 3: Classic Machine Learning -- Chapter 4: Supervised Learning: Using labeled data for Insights -- Chapter 5: Supervised Learning: Advanced Algorithms -- Chapter 6: Unsupervised Learning: Using Unlabeled Data -- Chapter 7: Unsupervised Learning: Neural Network Toolkits -- Chapter 8: Unsupervised Learning: Deep Learning -- Chapter 9: Reinforcement Learning: Using Newly Gained Knowledge for Insights -- Chapter 10: Evolutionary Computing -- Chapter 11: Mechatronics -- Chapter 12: Robotics Revolution -- Chapter 13: Fourth Industrial Revolution (4IR ) -- Chapter 14: Industrialized Artificial Intelligence -- Chapter 15: Final Industrialization Project -- Appendix: Reference Material.
Understand the industrialization of machine learning (ML) and take the first steps toward identifying and generating the transformational disruptors of artificial intelligence (AI) You will learn to apply ML to data lakes in various industries, supplying data professionals with the advanced skills required to handle the future of data engineering and data science. Data lakes currently generated by worldwide industrialized business activities are projected to reach 35 zettabytes (ZB) as the Fourth Industrial Revolution produces an exponential increase of volume, velocity, variety, variability, veracity, visualization, and value. Industrialization of ML evolves from AI and studying pattern recognition against the increasingly unstructured resource stored in data lakes. Industrial Machine Learning supplies advanced, yet practical examples in different industries, including finance, public safety, health care, transportation, manufactory, supply chain, 3D printing, education, research, and data science. The book covers: supervised learning, unsupervised learning, reinforcement learning, evolutionary computing principles, soft robotics disruptors, and hard robotics disruptors. You will: Generate and identify transformational disruptors of artificial intelligence (AI) Understand the field of machine learning (ML) and apply it to handle big data and process the data lakes in your environment Hone the skills required to handle the future of data engineering and data science.
ISBN: 9781484253168$q(electronic bk.)
Standard No.: 10.1007/978-1-4842-5316-8doiSubjects--Topical Terms:
188639
Machine learning.
LC Class. No.: Q325.5 / .V476 2020
Dewey Class. No.: 006.31
Industrial machine learningusing artificial intelligence as a transformational disruptor /
LDR
:03284nmm a2200325 a 4500
001
574382
003
DE-He213
005
20200324102452.0
006
m d
007
cr nn 008maaau
008
201007s2020 cau s 0 eng d
020
$a
9781484253168$q(electronic bk.)
020
$a
9781484253151$q(paper)
024
7
$a
10.1007/978-1-4842-5316-8
$2
doi
035
$a
978-1-4842-5316-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
$b
.V476 2020
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.V524 2020
100
1
$a
Vermeulen, Andreas Francois.
$3
806946
245
1 0
$a
Industrial machine learning
$h
[electronic resource] :
$b
using artificial intelligence as a transformational disruptor /
$c
by Andreas Francois Vermeulen.
260
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2020.
300
$a
xxiii, 637 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Chapter 1: Introduction -- Chapter 2: Background Knowledge -- Chapter 3: Classic Machine Learning -- Chapter 4: Supervised Learning: Using labeled data for Insights -- Chapter 5: Supervised Learning: Advanced Algorithms -- Chapter 6: Unsupervised Learning: Using Unlabeled Data -- Chapter 7: Unsupervised Learning: Neural Network Toolkits -- Chapter 8: Unsupervised Learning: Deep Learning -- Chapter 9: Reinforcement Learning: Using Newly Gained Knowledge for Insights -- Chapter 10: Evolutionary Computing -- Chapter 11: Mechatronics -- Chapter 12: Robotics Revolution -- Chapter 13: Fourth Industrial Revolution (4IR ) -- Chapter 14: Industrialized Artificial Intelligence -- Chapter 15: Final Industrialization Project -- Appendix: Reference Material.
520
$a
Understand the industrialization of machine learning (ML) and take the first steps toward identifying and generating the transformational disruptors of artificial intelligence (AI) You will learn to apply ML to data lakes in various industries, supplying data professionals with the advanced skills required to handle the future of data engineering and data science. Data lakes currently generated by worldwide industrialized business activities are projected to reach 35 zettabytes (ZB) as the Fourth Industrial Revolution produces an exponential increase of volume, velocity, variety, variability, veracity, visualization, and value. Industrialization of ML evolves from AI and studying pattern recognition against the increasingly unstructured resource stored in data lakes. Industrial Machine Learning supplies advanced, yet practical examples in different industries, including finance, public safety, health care, transportation, manufactory, supply chain, 3D printing, education, research, and data science. The book covers: supervised learning, unsupervised learning, reinforcement learning, evolutionary computing principles, soft robotics disruptors, and hard robotics disruptors. You will: Generate and identify transformational disruptors of artificial intelligence (AI) Understand the field of machine learning (ML) and apply it to handle big data and process the data lakes in your environment Hone the skills required to handle the future of data engineering and data science.
650
0
$a
Machine learning.
$3
188639
650
1 4
$a
Artificial Intelligence.
$3
212515
650
2 4
$a
Big Data.
$3
760530
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-1-4842-5316-8
950
$a
Professional and Applied Computing (Springer-12059)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000180648
電子館藏
1圖書
電子書
EB Q325.5 .V524 2020 2020
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
https://doi.org/10.1007/978-1-4842-5316-8
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login