語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine learning methods for reverse...
~
Laube, Pascal.
Machine learning methods for reverse engineering of defective structured surfaces
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Machine learning methods for reverse engineering of defective structured surfacesby Pascal Laube.
作者:
Laube, Pascal.
出版者:
Wiesbaden :Springer Fachmedien Wiesbaden :2020.
面頁冊數:
xv, 161 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Reverse engineeringData processing.
電子資源:
https://doi.org/10.1007/978-3-658-29017-7
ISBN:
9783658290177$q(electronic bk.)
Machine learning methods for reverse engineering of defective structured surfaces
Laube, Pascal.
Machine learning methods for reverse engineering of defective structured surfaces
[electronic resource] /by Pascal Laube. - Wiesbaden :Springer Fachmedien Wiesbaden :2020. - xv, 161 p. :ill., digital ;24 cm. - Schriftenreihe der Institute Für Systemdynamik (ISD) und Optische Systeme (IOS),2661-8087. - Schriftenreihe der Institute Für Systemdynamik (ISD) und Optische Systeme (IOS).
Machine Learning Methods for Parametrization in Curve and Surface Approximation -- Classification of Geometric Primitives in Point Clouds -- Image Inpainting for High-resolution Textures Using CNN Texture Synthesis.
Pascal Laube presents machine learning approaches for three key problems of reverse engineering of defective structured surfaces: parametrization of curves and surfaces, geometric primitive classification and inpainting of high-resolution textures. The proposed methods aim to improve the reconstruction quality while further automating the process. The contributions demonstrate that machine learning can be a viable part of the CAD reverse engineering pipeline. Contents Machine Learning Methods for Parametrization in Curve and Surface Approximation Classification of Geometric Primitives in Point Clouds Image Inpainting for High-resolution Textures Using CNN Texture Synthesis Target Groups Lecturers and students in the field of machine learning, geometric modeling and information theory Practitioners in the field of machine learning, surface reconstruction and CAD The Author Pascal Laube's main research interest is the development of machine learning methods for CAD reverse engineering. He is currently developing self-driving cars for an international operating German enterprise in the field of mobility, automotive and industrial technology.
ISBN: 9783658290177$q(electronic bk.)
Standard No.: 10.1007/978-3-658-29017-7doiSubjects--Topical Terms:
863636
Reverse engineering
--Data processing.
LC Class. No.: TA168.5 / .L38 2020
Dewey Class. No.: 620.0042
Machine learning methods for reverse engineering of defective structured surfaces
LDR
:02474nmm a2200337 a 4500
001
575553
003
DE-He213
005
20200102170855.0
006
m d
007
cr nn 008maaau
008
201027s2020 gw s 0 eng d
020
$a
9783658290177$q(electronic bk.)
020
$a
9783658290160$q(paper)
024
7
$a
10.1007/978-3-658-29017-7
$2
doi
035
$a
978-3-658-29017-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TA168.5
$b
.L38 2020
072
7
$a
UYQM
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQM
$2
thema
082
0 4
$a
620.0042
$2
23
090
$a
TA168.5
$b
.L366 2020
100
1
$a
Laube, Pascal.
$3
863635
245
1 0
$a
Machine learning methods for reverse engineering of defective structured surfaces
$h
[electronic resource] /
$c
by Pascal Laube.
260
$a
Wiesbaden :
$b
Springer Fachmedien Wiesbaden :
$b
Imprint: Springer Vieweg,
$c
2020.
300
$a
xv, 161 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Schriftenreihe der Institute Für Systemdynamik (ISD) und Optische Systeme (IOS),
$x
2661-8087
505
0
$a
Machine Learning Methods for Parametrization in Curve and Surface Approximation -- Classification of Geometric Primitives in Point Clouds -- Image Inpainting for High-resolution Textures Using CNN Texture Synthesis.
520
$a
Pascal Laube presents machine learning approaches for three key problems of reverse engineering of defective structured surfaces: parametrization of curves and surfaces, geometric primitive classification and inpainting of high-resolution textures. The proposed methods aim to improve the reconstruction quality while further automating the process. The contributions demonstrate that machine learning can be a viable part of the CAD reverse engineering pipeline. Contents Machine Learning Methods for Parametrization in Curve and Surface Approximation Classification of Geometric Primitives in Point Clouds Image Inpainting for High-resolution Textures Using CNN Texture Synthesis Target Groups Lecturers and students in the field of machine learning, geometric modeling and information theory Practitioners in the field of machine learning, surface reconstruction and CAD The Author Pascal Laube's main research interest is the development of machine learning methods for CAD reverse engineering. He is currently developing self-driving cars for an international operating German enterprise in the field of mobility, automotive and industrial technology.
650
0
$a
Reverse engineering
$x
Data processing.
$3
863636
650
0
$a
Machine learning.
$3
188639
650
1 4
$a
Machine Learning.
$3
833608
650
2 4
$a
Computer-Aided Engineering (CAD, CAE) and Design.
$3
274500
650
2 4
$a
Manufacturing, Machines, Tools, Processes.
$3
833130
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Schriftenreihe der Institute Für Systemdynamik (ISD) und Optische Systeme (IOS)
$3
863634
856
4 0
$u
https://doi.org/10.1007/978-3-658-29017-7
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000181509
電子館藏
1圖書
電子書
EB TA168.5 .L366 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-658-29017-7
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入