Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Hybrid intelligent technologies in e...
~
Hong, Wei-Chiang.
Hybrid intelligent technologies in energy demand forecasting
Record Type:
Electronic resources : Monograph/item
Title/Author:
Hybrid intelligent technologies in energy demand forecastingby Wei-Chiang Hong.
Author:
Hong, Wei-Chiang.
Published:
Cham :Springer International Publishing :2020.
Description:
xii, 179 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Energy consumptionForecasting
Online resource:
https://doi.org/10.1007/978-3-030-36529-5
ISBN:
9783030365295$q(electronic bk.)
Hybrid intelligent technologies in energy demand forecasting
Hong, Wei-Chiang.
Hybrid intelligent technologies in energy demand forecasting
[electronic resource] /by Wei-Chiang Hong. - Cham :Springer International Publishing :2020. - xii, 179 p. :ill., digital ;24 cm.
Introduction -- Modeling for Energy Demand Forecasting -- Data Pre-processing Methods -- Hybridizing Meta-heuristic Algorithms with CMM and QCM for SVR's Parameters Determination -- Hybridizing QCM with Dragonfly algorithm to Enrich the Solution Searching Be-haviors -- Phase Space Reconstruction and Recurrence Plot Theory.
This book is written for researchers and postgraduates who are interested in developing high-accurate energy demand forecasting models that outperform traditional models by hybridizing intelligent technologies. It covers meta-heuristic algorithms, chaotic mapping mechanism, quantum computing mechanism, recurrent mechanisms, phase space reconstruction, and recurrence plot theory. The book clearly illustrates how these intelligent technologies could be hybridized with those traditional forecasting models. This book provides many figures to deonstrate how these hybrid intelligent technologies are being applied to exceed the limitations of existing models.
ISBN: 9783030365295$q(electronic bk.)
Standard No.: 10.1007/978-3-030-36529-5doiSubjects--Topical Terms:
863744
Energy consumption
--Forecasting
LC Class. No.: HD9502.A2 / H664 2020
Dewey Class. No.: 333.79
Hybrid intelligent technologies in energy demand forecasting
LDR
:01970nmm a2200337 a 4500
001
575631
003
DE-He213
005
20200514172449.0
006
m d
007
cr nn 008maaau
008
201027s2020 sz s 0 eng d
020
$a
9783030365295$q(electronic bk.)
020
$a
9783030365288$q(paper)
024
7
$a
10.1007/978-3-030-36529-5
$2
doi
035
$a
978-3-030-36529-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
HD9502.A2
$b
H664 2020
072
7
$a
TH
$2
bicssc
072
7
$a
BUS070040
$2
bisacsh
072
7
$a
TH
$2
thema
072
7
$a
KNB
$2
thema
082
0 4
$a
333.79
$2
23
090
$a
HD9502.A2
$b
H772 2020
100
1
$a
Hong, Wei-Chiang.
$3
308673
245
1 0
$a
Hybrid intelligent technologies in energy demand forecasting
$h
[electronic resource] /
$c
by Wei-Chiang Hong.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xii, 179 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Introduction -- Modeling for Energy Demand Forecasting -- Data Pre-processing Methods -- Hybridizing Meta-heuristic Algorithms with CMM and QCM for SVR's Parameters Determination -- Hybridizing QCM with Dragonfly algorithm to Enrich the Solution Searching Be-haviors -- Phase Space Reconstruction and Recurrence Plot Theory.
520
$a
This book is written for researchers and postgraduates who are interested in developing high-accurate energy demand forecasting models that outperform traditional models by hybridizing intelligent technologies. It covers meta-heuristic algorithms, chaotic mapping mechanism, quantum computing mechanism, recurrent mechanisms, phase space reconstruction, and recurrence plot theory. The book clearly illustrates how these intelligent technologies could be hybridized with those traditional forecasting models. This book provides many figures to deonstrate how these hybrid intelligent technologies are being applied to exceed the limitations of existing models.
650
0
$a
Energy consumption
$x
Forecasting
$x
Data processing.
$3
863744
650
0
$a
Artificial intelligence.
$3
194058
650
1 4
$a
Energy Policy, Economics and Management.
$3
511210
650
2 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Simulation and Modeling.
$3
273719
650
2 4
$a
Applications of Nonlinear Dynamics and Chaos Theory.
$3
760027
650
2 4
$a
Renewable and Green Energy.
$3
309696
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-3-030-36529-5
950
$a
Energy (Springer-40367)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000181587
電子館藏
1圖書
電子書
EB HD9502.A2 H772 2020 2020
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
https://doi.org/10.1007/978-3-030-36529-5
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login