Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Geometric control of fracture and to...
~
Mitchell, Noah.
Geometric control of fracture and topological metamaterials
Record Type:
Electronic resources : Monograph/item
Title/Author:
Geometric control of fracture and topological metamaterialsby Noah Mitchell.
Author:
Mitchell, Noah.
Published:
Cham :Springer International Publishing :2020.
Description:
xix, 121 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
MetamaterialsFracture
Online resource:
https://doi.org/10.1007/978-3-030-36361-1
ISBN:
9783030363611$q(electronic bk.)
Geometric control of fracture and topological metamaterials
Mitchell, Noah.
Geometric control of fracture and topological metamaterials
[electronic resource] /by Noah Mitchell. - Cham :Springer International Publishing :2020. - xix, 121 p. :ill., digital ;24 cm. - Springer theses,2190-5053. - Springer theses..
Chapter1: Introduction -- PartI: Gaussian Curvature as a Guide for Material Failure -- Chapter2: Fracture in sheets draped on curved surfaces -- Chapter3: Conforming nanoparticle sheets to surfaces with gaussian curvature -- PartII: Topological mechanics in gyroscopic metamaterials -- Chapter4: Realization of a topological phase transition in a gyroscopic lattice -- Chapter5: Tunable band topology in gyroscopic lattices -- Chapter6: Topological insulators constructed from random point sets -- Chapter7: Conclusions and outlook.
This thesis reports a rare combination of experiment and theory on the role of geometry in materials science. It is built on two significant findings: that curvature can be used to guide crack paths in a predictive way, and that protected topological order can exist in amorphous materials. In each, the underlying geometry controls the elastic behavior of quasi-2D materials, enabling the control of crack propagation in elastic sheets and the control of unidirectional waves traveling at the boundary of metamaterials. The thesis examines the consequences of this geometric control in a range of materials spanning many orders of magnitude in length scale, from amorphous macroscopic networks and elastic continua to nanoscale lattices.
ISBN: 9783030363611$q(electronic bk.)
Standard No.: 10.1007/978-3-030-36361-1doiSubjects--Topical Terms:
864000
Metamaterials
--Fracture
LC Class. No.: TK7871.15.M48 / M583 2020
Dewey Class. No.: 620.1126
Geometric control of fracture and topological metamaterials
LDR
:02299nmm a2200337 a 4500
001
575824
003
DE-He213
005
20200528144203.0
006
m d
007
cr nn 008maaau
008
201027s2020 sz s 0 eng d
020
$a
9783030363611$q(electronic bk.)
020
$a
9783030363604$q(paper)
024
7
$a
10.1007/978-3-030-36361-1
$2
doi
035
$a
978-3-030-36361-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TK7871.15.M48
$b
M583 2020
072
7
$a
PNFS
$2
bicssc
072
7
$a
SCI077000
$2
bisacsh
072
7
$a
PNFS
$2
thema
082
0 4
$a
620.1126
$2
23
090
$a
TK7871.15.M48
$b
M681 2020
100
1
$a
Mitchell, Noah.
$3
863999
245
1 0
$a
Geometric control of fracture and topological metamaterials
$h
[electronic resource] /
$c
by Noah Mitchell.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xix, 121 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer theses,
$x
2190-5053
505
0
$a
Chapter1: Introduction -- PartI: Gaussian Curvature as a Guide for Material Failure -- Chapter2: Fracture in sheets draped on curved surfaces -- Chapter3: Conforming nanoparticle sheets to surfaces with gaussian curvature -- PartII: Topological mechanics in gyroscopic metamaterials -- Chapter4: Realization of a topological phase transition in a gyroscopic lattice -- Chapter5: Tunable band topology in gyroscopic lattices -- Chapter6: Topological insulators constructed from random point sets -- Chapter7: Conclusions and outlook.
520
$a
This thesis reports a rare combination of experiment and theory on the role of geometry in materials science. It is built on two significant findings: that curvature can be used to guide crack paths in a predictive way, and that protected topological order can exist in amorphous materials. In each, the underlying geometry controls the elastic behavior of quasi-2D materials, enabling the control of crack propagation in elastic sheets and the control of unidirectional waves traveling at the boundary of metamaterials. The thesis examines the consequences of this geometric control in a range of materials spanning many orders of magnitude in length scale, from amorphous macroscopic networks and elastic continua to nanoscale lattices.
650
0
$a
Metamaterials
$x
Fracture
$x
Mathematics.
$3
864000
650
1 4
$a
Solid State Physics.
$3
376486
650
2 4
$a
Optical and Electronic Materials.
$3
274099
650
2 4
$a
Mathematical Methods in Physics.
$3
273796
650
2 4
$a
Phase Transitions and Multiphase Systems.
$3
402450
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Springer theses.
$3
557607
856
4 0
$u
https://doi.org/10.1007/978-3-030-36361-1
950
$a
Physics and Astronomy (Springer-11651)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000181780
電子館藏
1圖書
電子書
EB TK7871.15.M48 M681 2020 2020
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
https://doi.org/10.1007/978-3-030-36361-1
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login