語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Deep learning classifiers with memri...
~
James, Alex Pappachen.
Deep learning classifiers with memristive networkstheory and applications /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Deep learning classifiers with memristive networksedited by Alex Pappachen James.
其他題名:
theory and applications /
其他作者:
James, Alex Pappachen.
出版者:
Cham :Springer International Publishing :2020.
面頁冊數:
xiii, 213 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Neural networks (Computer science)
電子資源:
https://doi.org/10.1007/978-3-030-14524-8
ISBN:
9783030145248$q(electronic bk.)
Deep learning classifiers with memristive networkstheory and applications /
Deep learning classifiers with memristive networks
theory and applications /[electronic resource] :edited by Alex Pappachen James. - Cham :Springer International Publishing :2020. - xiii, 213 p. :ill. (some col.), digital ;24 cm. - Modeling and optimization in science and technologies,v.142196-7326 ;. - Modeling and optimization in science and technologies ;v.2..
This book introduces readers to the fundamentals of deep neural network architectures, with a special emphasis on memristor circuits and systems. At first, the book offers an overview of neuro-memristive systems, including memristor devices, models, and theory, as well as an introduction to deep learning neural networks such as multi-layer networks, convolution neural networks, hierarchical temporal memory, and long short term memories, and deep neuro-fuzzy networks. It then focuses on the design of these neural networks using memristor crossbar architectures in detail. The book integrates the theory with various applications of neuro-memristive circuits and systems. It provides an introductory tutorial on a range of issues in the design, evaluation techniques, and implementations of different deep neural network architectures with memristors.
ISBN: 9783030145248$q(electronic bk.)
Standard No.: 10.1007/978-3-030-14524-8doiSubjects--Topical Terms:
181982
Neural networks (Computer science)
LC Class. No.: QA76.87
Dewey Class. No.: 006.32
Deep learning classifiers with memristive networkstheory and applications /
LDR
:01948nmm a2200325 a 4500
001
578121
003
DE-He213
005
20200207140026.0
006
m d
007
cr nn 008maaau
008
201208s2020 sz s 0 eng d
020
$a
9783030145248$q(electronic bk.)
020
$a
9783030145224$q(paper)
024
7
$a
10.1007/978-3-030-14524-8
$2
doi
035
$a
978-3-030-14524-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.87
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.32
$2
23
090
$a
QA76.87
$b
.D311 2020
245
0 0
$a
Deep learning classifiers with memristive networks
$h
[electronic resource] :
$b
theory and applications /
$c
edited by Alex Pappachen James.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xiii, 213 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Modeling and optimization in science and technologies,
$x
2196-7326 ;
$v
v.14
520
$a
This book introduces readers to the fundamentals of deep neural network architectures, with a special emphasis on memristor circuits and systems. At first, the book offers an overview of neuro-memristive systems, including memristor devices, models, and theory, as well as an introduction to deep learning neural networks such as multi-layer networks, convolution neural networks, hierarchical temporal memory, and long short term memories, and deep neuro-fuzzy networks. It then focuses on the design of these neural networks using memristor crossbar architectures in detail. The book integrates the theory with various applications of neuro-memristive circuits and systems. It provides an introductory tutorial on a range of issues in the design, evaluation techniques, and implementations of different deep neural network architectures with memristors.
650
0
$a
Neural networks (Computer science)
$3
181982
650
0
$a
Machine learning.
$3
188639
650
1 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Pattern Recognition.
$3
273706
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
275288
650
2 4
$a
Image Processing and Computer Vision.
$3
274051
700
1
$a
James, Alex Pappachen.
$3
866725
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Modeling and optimization in science and technologies ;
$v
v.2.
$3
674885
856
4 0
$u
https://doi.org/10.1007/978-3-030-14524-8
950
$a
Intelligent Technologies and Robotics (Springer-42732)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000183019
電子館藏
1圖書
電子書
EB QA76.87 .D311 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-14524-8
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入