Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Quantification of uncertaintyimprovi...
~
(1998 :)
Quantification of uncertaintyimproving efficiency and technology : QUIET selected contributions /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Quantification of uncertaintyedited by Marta D'Elia, Max Gunzburger, Gianluigi Rozza.
Reminder of title:
improving efficiency and technology : QUIET selected contributions /
remainder title:
QUIET 2017
other author:
D'Elia, Marta.
corporate name:
Published:
Cham :Springer International Publishing :2020.
Description:
xi, 282 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
Subject:
Uncertainty (Information theory)Congresses.Mathematical models
Online resource:
https://doi.org/10.1007/978-3-030-48721-8
ISBN:
9783030487218$q(electronic bk.)
Quantification of uncertaintyimproving efficiency and technology : QUIET selected contributions /
Quantification of uncertainty
improving efficiency and technology : QUIET selected contributions /[electronic resource] :QUIET 2017edited by Marta D'Elia, Max Gunzburger, Gianluigi Rozza. - Cham :Springer International Publishing :2020. - xi, 282 p. :ill., digital ;24 cm. - Lecture notes in computational science and engineering,1371439-7358 ;. - Lecture notes in computational science and engineering ;82..
1. Adeli, E. et al., Effect of Load Path on Parameter Identification for Plasticity Models using Bayesian Methods -- 2. Brugiapaglia S., A compressive spectral collocation method for the diffusion equation under the restricted isometry property -- 3. D'Elia, M. et al., Surrogate-based Ensemble Grouping Strategies for Embedded Sampling-based Uncertainty Quantification -- 4. Afkham, B.M. et al., Conservative Model Order Reduction for Fluid Flow -- 5. Clark C.L. and Winter C.L., A Semi-Markov Model of Mass Transport through Highly Heterogeneous Conductivity Fields -- 6. Matthies, H.G., Analysis of Probabilistic and Parametric Reduced Order Models -- 7. Carraturo, M. et al., Reduced Order Isogeometric Analysis Approach for PDEs in Parametrized Domains -- 8. Boccadifuoco, A. et al., Uncertainty quantification applied to hemodynamic simulations of thoracic aorta aneurysms: sensitivity to inlet conditions -- 9. Anderlini, A.et al., Cavitation model parameter calibration for simulations of three-phase injector flows -- 10. Hijazi, S. et al., Non-Intrusive Polynomial Chaos Method Applied to Full-Order and Reduced Problems in Computational Fluid Dynamics: a Comparison and Perspectives -- 11. Bulte, M. et al., A practical example for the non-linear Bayesian filtering of model parameters.
This book explores four guiding themes - reduced order modelling, high dimensional problems, efficient algorithms, and applications - by reviewing recent algorithmic and mathematical advances and the development of new research directions for uncertainty quantification in the context of partial differential equations with random inputs. Highlighting the most promising approaches for (near-) future improvements in the way uncertainty quantification problems in the partial differential equation setting are solved, and gathering contributions by leading international experts, the book's content will impact the scientific, engineering, financial, economic, environmental, social, and commercial sectors.
ISBN: 9783030487218$q(electronic bk.)
Standard No.: 10.1007/978-3-030-48721-8doiSubjects--Topical Terms:
874486
Uncertainty (Information theory)
--Mathematical models--Congresses.
LC Class. No.: Q375
Dewey Class. No.: 519.54
Quantification of uncertaintyimproving efficiency and technology : QUIET selected contributions /
LDR
:03170nmm a2200349 a 4500
001
583775
003
DE-He213
005
20201117092431.0
006
m d
007
cr nn 008maaau
008
210202s2020 sz s 0 eng d
020
$a
9783030487218$q(electronic bk.)
020
$a
9783030487201$q(paper)
024
7
$a
10.1007/978-3-030-48721-8
$2
doi
035
$a
978-3-030-48721-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q375
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT006000
$2
bisacsh
072
7
$a
PBKS
$2
thema
082
0 4
$a
519.54
$2
23
090
$a
Q375
$b
.I61 2017
111
2
$n
(3rd :
$d
1998 :
$c
Amsterdam, Netherlands)
$3
194767
245
1 0
$a
Quantification of uncertainty
$h
[electronic resource] :
$b
improving efficiency and technology : QUIET selected contributions /
$c
edited by Marta D'Elia, Max Gunzburger, Gianluigi Rozza.
246
3
$a
QUIET 2017
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xi, 282 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in computational science and engineering,
$x
1439-7358 ;
$v
137
505
0
$a
1. Adeli, E. et al., Effect of Load Path on Parameter Identification for Plasticity Models using Bayesian Methods -- 2. Brugiapaglia S., A compressive spectral collocation method for the diffusion equation under the restricted isometry property -- 3. D'Elia, M. et al., Surrogate-based Ensemble Grouping Strategies for Embedded Sampling-based Uncertainty Quantification -- 4. Afkham, B.M. et al., Conservative Model Order Reduction for Fluid Flow -- 5. Clark C.L. and Winter C.L., A Semi-Markov Model of Mass Transport through Highly Heterogeneous Conductivity Fields -- 6. Matthies, H.G., Analysis of Probabilistic and Parametric Reduced Order Models -- 7. Carraturo, M. et al., Reduced Order Isogeometric Analysis Approach for PDEs in Parametrized Domains -- 8. Boccadifuoco, A. et al., Uncertainty quantification applied to hemodynamic simulations of thoracic aorta aneurysms: sensitivity to inlet conditions -- 9. Anderlini, A.et al., Cavitation model parameter calibration for simulations of three-phase injector flows -- 10. Hijazi, S. et al., Non-Intrusive Polynomial Chaos Method Applied to Full-Order and Reduced Problems in Computational Fluid Dynamics: a Comparison and Perspectives -- 11. Bulte, M. et al., A practical example for the non-linear Bayesian filtering of model parameters.
520
$a
This book explores four guiding themes - reduced order modelling, high dimensional problems, efficient algorithms, and applications - by reviewing recent algorithmic and mathematical advances and the development of new research directions for uncertainty quantification in the context of partial differential equations with random inputs. Highlighting the most promising approaches for (near-) future improvements in the way uncertainty quantification problems in the partial differential equation setting are solved, and gathering contributions by leading international experts, the book's content will impact the scientific, engineering, financial, economic, environmental, social, and commercial sectors.
650
0
$a
Uncertainty (Information theory)
$x
Mathematical models
$v
Congresses.
$3
874486
650
0
$a
Differential equations, Partial
$v
Congresses.
$3
387282
650
1 4
$a
Computational Mathematics and Numerical Analysis.
$3
274020
650
2 4
$a
Mathematical and Computational Engineering.
$3
775095
650
2 4
$a
Simulation and Modeling.
$3
273719
700
1
$a
D'Elia, Marta.
$3
874484
700
1
$a
Gunzburger, Max.
$3
874485
700
1
$a
Rozza, Gianluigi.
$3
585209
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
Lecture notes in computational science and engineering ;
$v
82.
$3
558265
856
4 0
$u
https://doi.org/10.1007/978-3-030-48721-8
950
$a
Mathematics and Statistics (SpringerNature-11649)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000187895
電子館藏
1圖書
電子書
EB Q375 .I61 2017 2020
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
https://doi.org/10.1007/978-3-030-48721-8
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login