Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Incompleteness for higher-order arit...
~
Cheng, Yong.
Incompleteness for higher-order arithmetican example based on Harrington's principle /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Incompleteness for higher-order arithmeticby Yong Cheng.
Reminder of title:
an example based on Harrington's principle /
Author:
Cheng, Yong.
Published:
Singapore :Springer Singapore :2019.
Description:
xiv, 122 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
Subject:
Incompleteness theorems.
Online resource:
https://doi.org/10.1007/978-981-13-9949-7
ISBN:
9789811399497$q(electronic bk.)
Incompleteness for higher-order arithmetican example based on Harrington's principle /
Cheng, Yong.
Incompleteness for higher-order arithmetic
an example based on Harrington's principle /[electronic resource] :by Yong Cheng. - Singapore :Springer Singapore :2019. - xiv, 122 p. :ill., digital ;24 cm. - SpringerBriefs in mathematics,2191-8198. - SpringerBriefs in mathematics..
Introduction and Preliminary -- A minimal system -- The Boldface Martin-Harrington Theorem in Z2 -- Strengthenings of Harrington's Principle -- Forcing a model of Harrington's Principle without reshaping -- The strong reflecting property for L-cardinals.
ISBN: 9789811399497$q(electronic bk.)
Standard No.: 10.1007/978-981-13-9949-7doiSubjects--Topical Terms:
878784
Incompleteness theorems.
LC Class. No.: QA9.54 / .C54 2019
Dewey Class. No.: 511.3
Incompleteness for higher-order arithmetican example based on Harrington's principle /
LDR
:01338nmm a2200337 a 4500
001
587222
003
DE-He213
005
20200701152825.0
006
m d
007
cr nn 008maaau
008
210326s2019 si s 0 eng d
020
$a
9789811399497$q(electronic bk.)
020
$a
9789811399480$q(paper)
024
7
$a
10.1007/978-981-13-9949-7
$2
doi
035
$a
978-981-13-9949-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA9.54
$b
.C54 2019
072
7
$a
PBC
$2
bicssc
072
7
$a
MAT018000
$2
bisacsh
072
7
$a
PBC
$2
thema
072
7
$a
PBCD
$2
thema
082
0 4
$a
511.3
$2
23
090
$a
QA9.54
$b
.C518 2019
100
1
$a
Cheng, Yong.
$3
878284
245
1 0
$a
Incompleteness for higher-order arithmetic
$h
[electronic resource] :
$b
an example based on Harrington's principle /
$c
by Yong Cheng.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2019.
300
$a
xiv, 122 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematics,
$x
2191-8198
505
0
$a
Introduction and Preliminary -- A minimal system -- The Boldface Martin-Harrington Theorem in Z2 -- Strengthenings of Harrington's Principle -- Forcing a model of Harrington's Principle without reshaping -- The strong reflecting property for L-cardinals.
650
0
$a
Incompleteness theorems.
$3
878784
650
1 4
$a
Mathematical Logic and Foundations.
$3
274479
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in mathematics.
$3
558795
856
4 0
$u
https://doi.org/10.1007/978-981-13-9949-7
950
$a
Mathematics and Statistics (SpringerNature-11649)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000191007
電子館藏
1圖書
電子書
EB QA9.54 .C518 2019 2019
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
https://doi.org/10.1007/978-981-13-9949-7
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login