Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Analysis and classification of EEG s...
~
Paszkiel, Szczepan.
Analysis and classification of EEG signals for brain-computer interfaces
Record Type:
Electronic resources : Monograph/item
Title/Author:
Analysis and classification of EEG signals for brain-computer interfacesby Szczepan Paszkiel.
Author:
Paszkiel, Szczepan.
Published:
Cham :Springer International Publishing :2020.
Description:
vi, 132 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
Subject:
Brain-computer interfaces.
Online resource:
https://doi.org/10.1007/978-3-030-30581-9
ISBN:
9783030305819$q(electronic bk.)
Analysis and classification of EEG signals for brain-computer interfaces
Paszkiel, Szczepan.
Analysis and classification of EEG signals for brain-computer interfaces
[electronic resource] /by Szczepan Paszkiel. - Cham :Springer International Publishing :2020. - vi, 132 p. :ill., digital ;24 cm. - Studies in computational intelligence,v.8521860-949X ;. - Studies in computational intelligence ;v. 216..
Chapter 1. Introduction -- Chapter 2. Data acquisition methods for human brain activity -- Chapter 3. Brain-computer interface (BCI) technology, etc.
This book addresses the problem of EEG signal analysis and the need to classify it for practical use in many sample implementations of brain-computer interfaces. In addition, it offers a wealth of information, ranging from the description of data acquisition methods in the field of human brain work, to the use of Moore-Penrose pseudo inversion to reconstruct the EEG signal and the LORETA method to locate sources of EEG signal generation for the needs of BCI technology. In turn, the book explores the use of neural networks for the classification of changes in the EEG signal based on facial expressions. Further topics touch on machine learning, deep learning, and neural networks. The book also includes dedicated implementation chapters on the use of brain-computer technology in the field of mobile robot control based on Python and the LabVIEW environment. In closing, it discusses the problem of the correlation between brain-computer technology and virtual reality technology.
ISBN: 9783030305819$q(electronic bk.)
Standard No.: 10.1007/978-3-030-30581-9doiSubjects--Topical Terms:
286641
Brain-computer interfaces.
LC Class. No.: QP360.7 / .P37 2020
Dewey Class. No.: 612.80285
Analysis and classification of EEG signals for brain-computer interfaces
LDR
:02228nmm a2200337 a 4500
001
593194
003
DE-He213
005
20200701022721.0
006
m d
007
cr nn 008maaau
008
210727s2020 sz s 0 eng d
020
$a
9783030305819$q(electronic bk.)
020
$a
9783030305802$q(paper)
024
7
$a
10.1007/978-3-030-30581-9
$2
doi
035
$a
978-3-030-30581-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QP360.7
$b
.P37 2020
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
612.80285
$2
23
090
$a
QP360.7
$b
.P293 2020
100
1
$a
Paszkiel, Szczepan.
$3
806508
245
1 0
$a
Analysis and classification of EEG signals for brain-computer interfaces
$h
[electronic resource] /
$c
by Szczepan Paszkiel.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
vi, 132 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Studies in computational intelligence,
$x
1860-949X ;
$v
v.852
505
0
$a
Chapter 1. Introduction -- Chapter 2. Data acquisition methods for human brain activity -- Chapter 3. Brain-computer interface (BCI) technology, etc.
520
$a
This book addresses the problem of EEG signal analysis and the need to classify it for practical use in many sample implementations of brain-computer interfaces. In addition, it offers a wealth of information, ranging from the description of data acquisition methods in the field of human brain work, to the use of Moore-Penrose pseudo inversion to reconstruct the EEG signal and the LORETA method to locate sources of EEG signal generation for the needs of BCI technology. In turn, the book explores the use of neural networks for the classification of changes in the EEG signal based on facial expressions. Further topics touch on machine learning, deep learning, and neural networks. The book also includes dedicated implementation chapters on the use of brain-computer technology in the field of mobile robot control based on Python and the LabVIEW environment. In closing, it discusses the problem of the correlation between brain-computer technology and virtual reality technology.
650
0
$a
Brain-computer interfaces.
$3
286641
650
0
$a
Electroencephalography.
$3
194456
650
1 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Biomedical Engineering and Bioengineering.
$3
826326
650
2 4
$a
Neurobiology.
$3
195022
650
2 4
$a
Artificial Intelligence.
$3
212515
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
Studies in computational intelligence ;
$v
v. 216.
$3
380871
856
4 0
$u
https://doi.org/10.1007/978-3-030-30581-9
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000193184
電子館藏
1圖書
電子書
EB QP360.7 .P293 2020 2020
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
https://doi.org/10.1007/978-3-030-30581-9
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login