Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Machine learning for cyber physical ...
~
(1998 :)
Machine learning for cyber physical systemsselected papers from the International Conference ML4CPS 2020 /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Machine learning for cyber physical systemsedited by Jurgen Beyerer, Alexander Maier, Oliver Niggemann.
Reminder of title:
selected papers from the International Conference ML4CPS 2020 /
remainder title:
ML4CPS 2020
other author:
Beyerer, Jurgen.
corporate name:
Published:
Berlin, Heidelberg :Springer Berlin Heidelberg :2021.
Description:
vii, 130 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
Subject:
Machine learningCongresses.
Online resource:
https://doi.org/10.1007/978-3-662-62746-4
ISBN:
9783662627464$q(electronic bk.)
Machine learning for cyber physical systemsselected papers from the International Conference ML4CPS 2020 /
Machine learning for cyber physical systems
selected papers from the International Conference ML4CPS 2020 /[electronic resource] :ML4CPS 2020edited by Jurgen Beyerer, Alexander Maier, Oliver Niggemann. - Berlin, Heidelberg :Springer Berlin Heidelberg :2021. - vii, 130 p. :ill., digital ;24 cm. - Technologien fur die intelligente automation = Technologies for intelligent automation,Band 132522-8579 ;. - Technologien fur die intelligente automation ;Band 13..
Preface -- Energy Profile Prediction of Milling Processes Using Machine Learning Techniques -- Improvement of the prediction quality of electrical load profiles with artficial neural networks -- Detection and localization of an underwater docking station -- Deployment architecture for the local delivery of ML-Models to the industrial shop floor -- Deep Learning in Resource and Data Constrained Edge Computing Systems -- Prediction of Batch Processes Runtime Applying Dynamic Time Warping and Survival Analysis -- Proposal for requirements on industrial AI solutions -- Information modeling and knowledge extraction for machine learning applications in industrial production systems -- Explanation Framework for Intrusion Detection -- Automatic Generation of Improvement Suggestions for Legacy, PLC Controlled Manufacturing Equipment Utilizing Machine Learning -- Hardening Deep Neural Networks in Condition Monitoring Systems against Adversarial Example Attacks -- First Approaches to Automatically Diagnose and Reconfigure Hybrid Cyber-Physical Systems -- Machine learning for reconstruction of highly porous structures from FIB-SEM nano-tomographic data.
Open access.
ISBN: 9783662627464$q(electronic bk.)
Standard No.: 10.1007/978-3-662-62746-4doiSubjects--Topical Terms:
384498
Machine learning
--Congresses.
LC Class. No.: Q325.5
Dewey Class. No.: 006.31
Machine learning for cyber physical systemsselected papers from the International Conference ML4CPS 2020 /
LDR
:02418nmm a2200361 a 4500
001
596433
003
DE-He213
005
20201223214316.0
006
m d
007
cr nn 008maaau
008
211013s2021 gw s 0 eng d
020
$a
9783662627464$q(electronic bk.)
020
$a
9783662627457$q(paper)
024
7
$a
10.1007/978-3-662-62746-4
$2
doi
035
$a
978-3-662-62746-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
072
7
$a
THR
$2
bicssc
072
7
$a
TEC007000
$2
bisacsh
072
7
$a
THR
$2
thema
072
7
$a
GPFC
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.M685 2020
111
2
$n
(3rd :
$d
1998 :
$c
Amsterdam, Netherlands)
$3
194767
245
1 0
$a
Machine learning for cyber physical systems
$h
[electronic resource] :
$b
selected papers from the International Conference ML4CPS 2020 /
$c
edited by Jurgen Beyerer, Alexander Maier, Oliver Niggemann.
246
3
$a
ML4CPS 2020
260
$a
Berlin, Heidelberg :
$b
Springer Berlin Heidelberg :
$b
Imprint: Springer Vieweg,
$c
2021.
300
$a
vii, 130 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Technologien fur die intelligente automation = Technologies for intelligent automation,
$x
2522-8579 ;
$v
Band 13
505
0
$a
Preface -- Energy Profile Prediction of Milling Processes Using Machine Learning Techniques -- Improvement of the prediction quality of electrical load profiles with artficial neural networks -- Detection and localization of an underwater docking station -- Deployment architecture for the local delivery of ML-Models to the industrial shop floor -- Deep Learning in Resource and Data Constrained Edge Computing Systems -- Prediction of Batch Processes Runtime Applying Dynamic Time Warping and Survival Analysis -- Proposal for requirements on industrial AI solutions -- Information modeling and knowledge extraction for machine learning applications in industrial production systems -- Explanation Framework for Intrusion Detection -- Automatic Generation of Improvement Suggestions for Legacy, PLC Controlled Manufacturing Equipment Utilizing Machine Learning -- Hardening Deep Neural Networks in Condition Monitoring Systems against Adversarial Example Attacks -- First Approaches to Automatically Diagnose and Reconfigure Hybrid Cyber-Physical Systems -- Machine learning for reconstruction of highly porous structures from FIB-SEM nano-tomographic data.
506
$a
Open access.
650
0
$a
Machine learning
$v
Congresses.
$3
384498
650
0
$a
Cooperating objects (Computer systems)
$3
675607
650
1 4
$a
Cyber-physical systems, IoT.
$3
836359
650
2 4
$a
Communications Engineering, Networks.
$3
273745
650
2 4
$a
Computer Systems Organization and Communication Networks.
$3
273709
700
1
$a
Beyerer, Jurgen.
$3
740888
700
1
$a
Maier, Alexander.
$3
866702
700
1
$a
Niggemann, Oliver.
$3
740887
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
Technologien fur die intelligente automation ;
$v
Band 13.
$3
889208
856
4 0
$u
https://doi.org/10.1007/978-3-662-62746-4
950
$a
Engineering (SpringerNature-11647)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000194131
電子館藏
1圖書
電子書
EB Q325.5 .M685 2020 2021
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
https://doi.org/10.1007/978-3-662-62746-4
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login